car-detection-bayes/utils/datasets.py

509 lines
20 KiB
Python
Raw Normal View History

2018-08-26 08:51:39 +00:00
import glob
import math
import os
import random
import shutil
from pathlib import Path
2018-08-26 08:51:39 +00:00
import cv2
import numpy as np
import torch
2019-07-25 11:19:26 +00:00
from PIL import Image, ExifTags
2019-03-21 20:41:12 +00:00
from torch.utils.data import Dataset
from tqdm import tqdm
2018-08-26 08:51:39 +00:00
2019-06-18 19:34:44 +00:00
from utils.utils import xyxy2xywh, xywh2xyxy
2018-08-26 08:51:39 +00:00
2019-07-04 12:03:13 +00:00
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif']
vid_formats = ['.mov', '.avi', '.mp4']
2019-07-09 18:56:58 +00:00
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
try:
rotation = dict(img._getexif().items())[orientation]
if rotation == 6: # rotation 270
s = (s[1], s[0])
elif rotation == 8: # rotation 90
s = (s[1], s[0])
except:
None
return s
2018-08-26 08:51:39 +00:00
2019-02-11 11:44:12 +00:00
class LoadImages: # for inference
2019-02-08 21:43:05 +00:00
def __init__(self, path, img_size=416):
2019-07-30 13:23:31 +00:00
path = str(Path(path)) # os-agnostic
2019-04-02 11:43:18 +00:00
files = []
if os.path.isdir(path):
2019-07-30 13:15:23 +00:00
files = sorted(glob.glob(os.path.join(path, '*.*')))
2019-04-02 11:43:18 +00:00
elif os.path.isfile(path):
files = [path]
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
2019-04-02 13:09:13 +00:00
nI, nV = len(images), len(videos)
2019-07-25 16:18:40 +00:00
self.img_size = img_size
2019-04-02 11:43:18 +00:00
self.files = images + videos
2019-04-02 13:09:13 +00:00
self.nF = nI + nV # number of files
self.video_flag = [False] * nI + [True] * nV
2019-04-02 11:43:18 +00:00
self.mode = 'images'
if any(videos):
self.new_video(videos[0]) # new video
else:
self.cap = None
assert self.nF > 0, 'No images or videos found in ' + path
2018-08-26 08:51:39 +00:00
def __iter__(self):
2019-04-02 11:43:18 +00:00
self.count = 0
2018-08-26 08:51:39 +00:00
return self
def __next__(self):
2019-02-08 21:43:05 +00:00
if self.count == self.nF:
2018-08-26 08:51:39 +00:00
raise StopIteration
2019-04-02 11:43:18 +00:00
path = self.files[self.count]
if self.video_flag[self.count]:
2019-04-02 13:09:13 +00:00
# Read video
2019-04-02 11:43:18 +00:00
self.mode = 'video'
ret_val, img0 = self.cap.read()
if not ret_val:
self.count += 1
self.cap.release()
if self.count == self.nF: # last video
raise StopIteration
else:
path = self.files[self.count]
self.new_video(path)
ret_val, img0 = self.cap.read()
self.frame += 1
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='')
else:
# Read image
self.count += 1
img0 = cv2.imread(path) # BGR
assert img0 is not None, 'File Not Found ' + path
print('image %g/%g %s: ' % (self.count, self.nF, path), end='')
2018-08-26 08:51:39 +00:00
# Padded resize
2019-07-25 16:18:40 +00:00
img, *_ = letterbox(img0, new_shape=self.img_size)
2018-08-26 08:51:39 +00:00
# Normalize RGB
2019-03-20 17:30:10 +00:00
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
2018-08-26 08:51:39 +00:00
2019-04-02 11:43:18 +00:00
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
return path, img, img0, self.cap
def new_video(self, path):
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
2018-08-26 08:51:39 +00:00
def __len__(self):
2019-02-08 21:43:05 +00:00
return self.nF # number of files
2018-08-26 08:51:39 +00:00
2019-02-11 12:45:04 +00:00
class LoadWebcam: # for inference
2019-02-11 16:25:32 +00:00
def __init__(self, img_size=416):
2019-07-25 16:18:40 +00:00
self.img_size = img_size
self.cam = cv2.VideoCapture(0) # local camera
# self.cam = cv2.VideoCapture('rtsp://192.168.1.64/1') # IP camera
# self.cam = cv2.VideoCapture('rtsp://username:password@192.168.1.64/1') # IP camera with login
2019-02-11 12:45:04 +00:00
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if cv2.waitKey(1) == 27: # esc to quit
cv2.destroyAllWindows()
raise StopIteration
# Read image
ret_val, img0 = self.cam.read()
assert ret_val, 'Webcam Error'
img_path = 'webcam_%g.jpg' % self.count
2019-03-20 18:31:09 +00:00
img0 = cv2.flip(img0, 1) # flip left-right
2019-04-29 15:57:51 +00:00
print('webcam %g: ' % self.count, end='')
2019-02-11 12:45:04 +00:00
# Padded resize
2019-07-25 16:18:40 +00:00
img, *_ = letterbox(img0, new_shape=self.img_size)
2019-02-11 12:45:04 +00:00
# Normalize RGB
2019-03-20 17:30:10 +00:00
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
2019-02-11 12:45:04 +00:00
2019-04-10 14:39:15 +00:00
return img_path, img, img0, None
2019-02-11 12:45:04 +00:00
def __len__(self):
2019-02-11 17:15:51 +00:00
return 0
2019-02-11 12:45:04 +00:00
2019-03-21 20:41:12 +00:00
class LoadImagesAndLabels(Dataset): # for training/testing
2019-07-20 15:05:09 +00:00
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False):
2019-07-30 13:23:31 +00:00
path = str(Path(path)) # os-agnostic
2019-04-23 16:36:43 +00:00
with open(path, 'r') as f:
2019-07-30 13:58:10 +00:00
self.img_files = [x.replace('/', os.sep) for x in f.read().splitlines() # os-agnostic
if os.path.splitext(x)[-1].lower() in img_formats]
2019-04-18 12:47:05 +00:00
n = len(self.img_files)
2019-05-21 15:37:34 +00:00
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches
2019-04-18 12:47:05 +00:00
assert n > 0, 'No images found in %s' % path
2019-05-21 15:37:34 +00:00
self.n = n
self.batch = bi # batch index of image
2019-03-19 08:38:32 +00:00
self.img_size = img_size
2018-09-02 09:38:39 +00:00
self.augment = augment
2019-07-20 12:54:37 +00:00
self.hyp = hyp
2019-05-11 12:38:48 +00:00
self.image_weights = image_weights
self.rect = False if image_weights else rect
2019-07-04 12:03:13 +00:00
# Define labels
2019-07-07 21:42:24 +00:00
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
for x in self.img_files]
2018-09-02 09:26:56 +00:00
2019-04-24 19:23:54 +00:00
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
2019-05-10 12:15:09 +00:00
if self.rect:
2019-05-05 12:13:05 +00:00
# Read image shapes
2019-07-20 16:46:51 +00:00
sp = 'data' + os.sep + path.replace('.txt', '.shapes').split(os.sep)[-1] # shapefile path
try:
with open(sp, 'r') as f: # read existing shapefile
2019-07-20 16:55:36 +00:00
s = [x.split() for x in f.read().splitlines()]
2019-07-20 16:46:51 +00:00
assert len(s) == n, 'Shapefile out of sync'
except:
2019-07-20 16:55:36 +00:00
s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')]
np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
2019-07-09 16:40:29 +00:00
2019-04-24 19:23:54 +00:00
# Sort by aspect ratio
2019-07-20 16:55:36 +00:00
s = np.array(s, dtype=np.float64)
2019-05-05 12:13:05 +00:00
ar = s[:, 1] / s[:, 0] # aspect ratio
2019-04-23 16:36:43 +00:00
i = ar.argsort()
self.img_files = [self.img_files[i] for i in i]
self.label_files = [self.label_files[i] for i in i]
2019-07-04 12:03:13 +00:00
ar = ar[i]
2019-04-24 19:23:54 +00:00
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(np.array(shapes) * img_size / 32.).astype(np.int) * 32
2019-04-23 16:36:43 +00:00
2019-04-27 15:44:26 +00:00
# Preload labels (required for weighted CE training)
2019-05-23 11:15:44 +00:00
self.imgs = [None] * n
2019-06-25 09:45:38 +00:00
self.labels = [None] * n
preload_labels = False
2019-07-30 15:51:19 +00:00
if preload_labels or image_weights:
2019-06-25 09:45:38 +00:00
self.labels = [np.zeros((0, 5))] * n
extract_bounding_boxes = False
2019-07-30 13:58:10 +00:00
for i, file in enumerate(tqdm(self.label_files, desc='Reading labels') if n > 10 else self.label_files):
2019-06-25 09:45:38 +00:00
try:
with open(file, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
self.labels[i] = l
# Extract object detection boxes for a second stage classifier
if extract_bounding_boxes:
p = Path(self.img_files[i])
img = cv2.imread(str(p))
h, w, _ = img.shape
for j, x in enumerate(l):
f = '%s%sclassification%s%g_%g_%s' % (
p.parent.parent, os.sep, os.sep, x[0], j, p.name)
if not os.path.exists(Path(f).parent):
os.makedirs(Path(f).parent) # make new output folder
box = xywh2xyxy(x[1:].reshape(-1, 4)).ravel()
box = np.clip(box, 0, 1) # clip boxes outside of image
result = cv2.imwrite(f, img[int(box[1] * h):int(box[3] * h),
int(box[0] * w):int(box[2] * w)])
if not result:
print('stop')
except:
pass # print('Warning: missing labels for %s' % self.img_files[i]) # missing label file
assert len(np.concatenate(self.labels, 0)) > 0, 'No labels found. Incorrect label paths provided.'
2019-04-27 15:44:26 +00:00
2019-07-09 12:18:19 +00:00
# Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
detect_corrupted_images = False
if detect_corrupted_images:
from skimage import io # conda install -c conda-forge scikit-image
for file in tqdm(self.img_files, desc='Detecting corrupted images'):
try:
_ = io.imread(file)
except:
print('Corrupted image detected: %s' % file)
2019-03-21 20:41:12 +00:00
def __len__(self):
return len(self.img_files)
2018-08-26 08:51:39 +00:00
2019-05-21 15:37:34 +00:00
# def __iter__(self):
# self.count = -1
# print('ran dataset iter')
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
# return self
2019-03-20 23:57:16 +00:00
def __getitem__(self, index):
2019-05-10 13:16:02 +00:00
if self.image_weights:
index = self.indices[index]
2019-05-10 12:15:09 +00:00
2019-03-21 20:41:12 +00:00
img_path = self.img_files[index]
label_path = self.label_files[index]
2019-07-20 12:54:37 +00:00
hyp = self.hyp
2019-03-21 20:41:12 +00:00
2019-05-08 11:06:24 +00:00
# Load image
2019-05-23 11:15:44 +00:00
img = self.imgs[index]
if img is None:
2019-05-08 11:06:24 +00:00
img = cv2.imread(img_path) # BGR
2019-05-23 11:19:49 +00:00
assert img is not None, 'File Not Found ' + img_path
2019-07-17 12:14:42 +00:00
r = self.img_size / max(img.shape) # size ratio
2019-07-20 15:05:09 +00:00
if self.augment and r < 1: # if training (NOT testing), downsize to inference shape
2019-07-17 12:14:42 +00:00
h, w, _ = img.shape
img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA)
2019-07-17 12:19:09 +00:00
if self.n < 3000: # cache into memory if image count < 3000
2019-07-17 12:14:42 +00:00
self.imgs[index] = img
2019-03-21 20:41:12 +00:00
2019-05-08 11:06:24 +00:00
# Augment colorspace
2019-03-21 20:41:12 +00:00
augment_hsv = True
if self.augment and augment_hsv:
# SV augmentation by 50%
2019-04-18 12:33:32 +00:00
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val
S = img_hsv[:, :, 1].astype(np.float32) # saturation
V = img_hsv[:, :, 2].astype(np.float32) # value
2019-03-21 20:41:12 +00:00
2019-07-20 12:54:37 +00:00
a = random.uniform(-1, 1) * hyp['hsv_s'] + 1
b = random.uniform(-1, 1) * hyp['hsv_v'] + 1
2019-03-21 20:41:12 +00:00
S *= a
2019-04-18 12:33:32 +00:00
V *= b
2019-03-21 20:41:12 +00:00
2019-04-18 12:33:32 +00:00
img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255)
img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255)
2019-03-21 20:41:12 +00:00
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
2019-04-24 19:23:54 +00:00
# Letterbox
2019-03-21 20:41:12 +00:00
h, w, _ = img.shape
2019-05-10 12:15:09 +00:00
if self.rect:
2019-05-21 15:37:34 +00:00
shape = self.batch_shapes[self.batch[index]]
2019-06-21 19:27:50 +00:00
img, ratiow, ratioh, padw, padh = letterbox(img, new_shape=shape, mode='rect')
2019-04-24 19:23:54 +00:00
else:
2019-06-12 11:04:58 +00:00
shape = self.img_size
2019-06-21 21:11:24 +00:00
img, ratiow, ratioh, padw, padh = letterbox(img, new_shape=shape, mode='square')
2019-03-21 20:41:12 +00:00
# Load labels
labels = []
2019-03-21 20:41:12 +00:00
if os.path.isfile(label_path):
2019-04-27 15:44:26 +00:00
x = self.labels[index]
2019-06-25 09:45:38 +00:00
if x is None: # labels not preloaded
with open(label_path, 'r') as f:
x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
self.labels[index] = x # save for next time
if x.size > 0:
2019-03-22 10:59:09 +00:00
# Normalized xywh to pixel xyxy format
2019-03-22 12:52:58 +00:00
labels = x.copy()
2019-06-21 19:27:50 +00:00
labels[:, 1] = ratiow * w * (x[:, 1] - x[:, 3] / 2) + padw
labels[:, 2] = ratioh * h * (x[:, 2] - x[:, 4] / 2) + padh
labels[:, 3] = ratiow * w * (x[:, 1] + x[:, 3] / 2) + padw
labels[:, 4] = ratioh * h * (x[:, 2] + x[:, 4] / 2) + padh
2019-03-21 20:41:12 +00:00
# Augment image and labels
if self.augment:
2019-07-20 12:54:37 +00:00
img, labels = random_affine(img, labels,
degrees=hyp['degrees'],
translate=hyp['translate'],
scale=hyp['scale'],
shear=hyp['shear'])
2019-03-21 20:41:12 +00:00
nL = len(labels) # number of labels
if nL:
2019-03-21 20:41:12 +00:00
# convert xyxy to xywh
2019-04-25 20:47:31 +00:00
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
2019-04-26 10:24:18 +00:00
# Normalize coordinates 0 - 1
2019-04-25 20:47:31 +00:00
labels[:, [2, 4]] /= img.shape[0] # height
labels[:, [1, 3]] /= img.shape[1] # width
2019-03-21 20:41:12 +00:00
if self.augment:
# random left-right flip
lr_flip = True
if lr_flip and random.random() > 0.5:
2019-03-21 20:41:12 +00:00
img = np.fliplr(img)
if nL:
2019-03-21 20:41:12 +00:00
labels[:, 1] = 1 - labels[:, 1]
# random up-down flip
ud_flip = False
if ud_flip and random.random() > 0.5:
2019-03-21 20:41:12 +00:00
img = np.flipud(img)
if nL:
2019-03-21 20:41:12 +00:00
labels[:, 2] = 1 - labels[:, 2]
labels_out = torch.zeros((nL, 6))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)
2019-03-21 12:48:40 +00:00
2019-03-21 20:41:12 +00:00
# Normalize
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
2019-03-21 20:41:12 +00:00
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
2018-08-26 08:51:39 +00:00
return torch.from_numpy(img), labels_out, img_path, (h, w)
@staticmethod
def collate_fn(batch):
img, label, path, hw = list(zip(*batch)) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, hw
2018-08-26 08:51:39 +00:00
2019-07-20 12:04:50 +00:00
def letterbox(img, new_shape=416, color=(128, 128, 128), mode='auto'):
2019-04-21 18:35:11 +00:00
# Resize a rectangular image to a 32 pixel multiple rectangle
2019-04-24 19:23:54 +00:00
# https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
2019-07-09 18:56:58 +00:00
2019-04-24 19:23:54 +00:00
if isinstance(new_shape, int):
ratio = float(new_shape) / max(shape)
else:
ratio = max(new_shape) / max(shape) # ratio = new / old
2019-06-21 19:27:50 +00:00
ratiow, ratioh = ratio, ratio
2019-04-24 19:23:54 +00:00
new_unpad = (int(round(shape[1] * ratio)), int(round(shape[0] * ratio)))
# Compute padding https://github.com/ultralytics/yolov3/issues/232
if mode is 'auto': # minimum rectangle
dw = np.mod(new_shape - new_unpad[0], 32) / 2 # width padding
dh = np.mod(new_shape - new_unpad[1], 32) / 2 # height padding
2019-04-23 16:36:43 +00:00
elif mode is 'square': # square
2019-04-24 19:23:54 +00:00
dw = (new_shape - new_unpad[0]) / 2 # width padding
dh = (new_shape - new_unpad[1]) / 2 # height padding
elif mode is 'rect': # square
dw = (new_shape[1] - new_unpad[0]) / 2 # width padding
dh = (new_shape[0] - new_unpad[1]) / 2 # height padding
2019-06-21 19:27:50 +00:00
elif mode is 'scaleFill':
dw, dh = 0.0, 0.0
new_unpad = (new_shape, new_shape)
2019-06-24 12:13:16 +00:00
ratiow, ratioh = new_shape / shape[1], new_shape / shape[0]
2019-04-21 18:35:11 +00:00
2019-07-23 11:47:30 +00:00
if shape[::-1] != new_unpad:
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_AREA) # resize
2019-04-21 18:35:11 +00:00
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
2019-07-23 11:47:30 +00:00
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
2019-06-21 19:27:50 +00:00
return img, ratiow, ratioh, dw, dh
2019-02-10 19:32:04 +00:00
2018-08-26 08:51:39 +00:00
2019-07-20 12:54:37 +00:00
def random_affine(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10):
2018-08-26 08:51:39 +00:00
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
if targets is None:
targets = []
2018-08-26 08:51:39 +00:00
border = 0 # width of added border (optional)
2019-04-24 17:56:04 +00:00
height = img.shape[0] + border * 2
width = img.shape[1] + border * 2
2018-08-26 08:51:39 +00:00
# Rotation and Scale
R = np.eye(3)
2019-07-20 12:54:37 +00:00
a = random.uniform(-degrees, degrees)
2019-07-20 12:04:50 +00:00
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
2019-07-20 12:54:37 +00:00
s = random.uniform(1 - scale, 1 + scale)
2018-08-26 08:51:39 +00:00
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
# Translation
T = np.eye(3)
2019-07-20 12:54:37 +00:00
T[0, 2] = random.uniform(-translate, translate) * img.shape[0] + border # x translation (pixels)
T[1, 2] = random.uniform(-translate, translate) * img.shape[1] + border # y translation (pixels)
2018-08-26 08:51:39 +00:00
# Shear
S = np.eye(3)
2019-07-20 12:54:37 +00:00
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
2018-08-26 08:51:39 +00:00
2018-09-02 09:38:39 +00:00
M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!!
2019-07-04 18:43:20 +00:00
imw = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_AREA,
2019-07-20 12:54:37 +00:00
borderValue=(128, 128, 128)) # BGR order borderValue
2018-08-26 08:51:39 +00:00
# Return warped points also
if len(targets) > 0:
n = targets.shape[0]
points = targets[:, 1:5].copy()
area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1])
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = (xy @ M.T)[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
2019-05-06 14:37:41 +00:00
# # apply angle-based reduction of bounding boxes
# radians = a * math.pi / 180
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
# x = (xy[:, 2] + xy[:, 0]) / 2
# y = (xy[:, 3] + xy[:, 1]) / 2
# w = (xy[:, 2] - xy[:, 0]) * reduction
# h = (xy[:, 3] - xy[:, 1]) * reduction
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
# reject warped points outside of image
2019-04-24 17:56:04 +00:00
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
w = xy[:, 2] - xy[:, 0]
h = xy[:, 3] - xy[:, 1]
area = w * h
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16))
2019-05-10 12:15:09 +00:00
i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10)
targets = targets[i]
targets[:, 1:5] = xy[i]
return imw, targets
def convert_images2bmp():
# cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s
for path in ['../coco/images/val2014/', '../coco/images/train2014/']:
folder = os.sep + Path(path).name
output = path.replace(folder, folder + 'bmp')
if os.path.exists(output):
shutil.rmtree(output) # delete output folder
os.makedirs(output) # make new output folder
for f in tqdm(glob.glob('%s*.jpg' % path)):
save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp')
cv2.imwrite(save_name, cv2.imread(f))
for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
with open(label_path, 'r') as file:
lines = file.read()
lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace(
'/Users/glennjocher/PycharmProjects/', '../')
with open(label_path.replace('5k', '5k_bmp'), 'w') as file:
file.write(lines)