updates
This commit is contained in:
parent
bc262aca2a
commit
a39ee4d252
|
@ -253,7 +253,7 @@ def load_darknet_weights(self, weights, cutoff=-1):
|
|||
if not os.path.isfile(weights):
|
||||
try:
|
||||
url = 'https://pjreddie.com/media/files/' + weights_file
|
||||
print('Downloading ' + url + ' to ' + weights)
|
||||
print('Downloading ' + url)
|
||||
os.system('curl ' + url + ' -o ' + weights)
|
||||
except IOError:
|
||||
print(weights + ' not found.\nTry https://drive.google.com/drive/folders/1uxgUBemJVw9wZsdpboYbzUN4bcRhsuAI')
|
||||
|
|
8
test.py
8
test.py
|
@ -87,9 +87,6 @@ def test(cfg,
|
|||
stats.append(([], torch.Tensor(), torch.Tensor(), tcls))
|
||||
continue
|
||||
|
||||
# Clip boxes to image bounds
|
||||
clip_coords(pred, (height, width))
|
||||
|
||||
# Append to text file
|
||||
# with open('test.txt', 'a') as file:
|
||||
# [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
|
||||
|
@ -99,7 +96,7 @@ def test(cfg,
|
|||
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
||||
image_id = int(Path(paths[si]).stem.split('_')[-1])
|
||||
box = pred[:, :4].clone() # xyxy
|
||||
box = scale_coords(imgs[si].shape[1:], box, shapes[si]) # to original shape
|
||||
scale_coords(imgs[si].shape[1:], box, shapes[si]) # to original shape
|
||||
box = xyxy2xywh(box) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for di, d in enumerate(pred):
|
||||
|
@ -108,6 +105,9 @@ def test(cfg,
|
|||
'bbox': [float3(x) for x in box[di]],
|
||||
'score': float(d[4])})
|
||||
|
||||
# Clip boxes to image bounds
|
||||
clip_coords(pred, (height, width))
|
||||
|
||||
# Assign all predictions as incorrect
|
||||
correct = [0] * len(pred)
|
||||
if nl:
|
||||
|
|
|
@ -152,7 +152,7 @@ class LoadWebcam: # for inference
|
|||
|
||||
|
||||
class LoadImagesAndLabels(Dataset): # for training/testing
|
||||
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=True, image_weights=False):
|
||||
def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False):
|
||||
with open(path, 'r') as f:
|
||||
img_files = f.read().splitlines()
|
||||
self.img_files = [x for x in img_files if os.path.splitext(x)[-1].lower() in img_formats]
|
||||
|
@ -280,7 +280,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
img = cv2.imread(img_path) # BGR
|
||||
assert img is not None, 'File Not Found ' + img_path
|
||||
r = self.img_size / max(img.shape) # size ratio
|
||||
if r < 1: # downsize if target shape is smaller
|
||||
if self.augment and r < 1: # if training (NOT testing), downsize to inference shape
|
||||
h, w, _ = img.shape
|
||||
img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA)
|
||||
|
||||
|
|
Loading…
Reference in New Issue