class labeling corrections

This commit is contained in:
Glenn Jocher 2019-02-11 13:45:04 +01:00
parent 1ca352b328
commit 786e10a197
2 changed files with 63 additions and 18 deletions

View File

@ -17,7 +17,8 @@ def detect(
conf_thres=0.3,
nms_thres=0.45,
save_txt=False,
save_images=True
save_images=True,
webcam=False
):
device = torch_utils.select_device()
os.system('rm -rf ' + output)
@ -37,15 +38,20 @@ def detect(
model.to(device).eval()
# Set Dataloader
dataloader = LoadImages(images, img_size=img_size)
if webcam:
save_images = False
dataloader = LoadWebcam(images, img_size=img_size)
else:
dataloader = LoadImages(images, img_size=img_size)
# Get classes and colors
classes = load_classes(parse_data_cfg('cfg/coco.data')['names'])
colors = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))]
for i, (path, img, im0) in enumerate(dataloader):
print("%g/%g '%s': " % (i + 1, len(dataloader), path), end='')
t = time.time()
print("%g/%g '%s': " % (i + 1, len(dataloader), path), end='')
save_path = os.path.join(output, path.split('/')[-1])
# Get detections
img = torch.from_numpy(img).unsqueeze(0).to(device)
@ -53,45 +59,48 @@ def detect(
torch.onnx._export(model, img, 'weights/model.onnx', verbose=True)
return # ONNX export
pred = model(img)
pred = pred[pred[:, :, 4] > conf_thres]
pred = pred[pred[:, :, 4] > conf_thres] # remove boxes < threshold
if len(pred) > 0:
# Run NMS on predictions
detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0]
# Draw bounding boxes and labels of detections
if detections is not None:
save_path = os.path.join(output, path.split('/')[-1])
# Rescale boxes from 416 to true image size
detections[:, :4] = scale_coords(img_size, detections[:, :4], im0.shape)
# Print results to screen
unique_classes = detections[:, -1].cpu().unique()
for i in unique_classes:
n = (detections[:, -1].cpu() == i).sum()
print('%g %ss' % (n, classes[int(i)]), end=', ')
# Draw bounding boxes and labels of detections
for x1, y1, x2, y2, conf, cls_conf, cls in detections:
if save_txt: # Write to file
with open(save_path + '.txt', 'a') as file:
file.write('%g %g %g %g %g %g\n' % (x1, y1, x2, y2, cls, cls_conf * conf))
file.write('%g %g %g %g %g %g\n' %
(x1, y1, x2, y2, cls, cls_conf * conf))
if save_images: # Add bbox to the image
label = '%s %.2f' % (classes[int(cls)], conf)
plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[int(cls)])
if save_images: # Save generated image with detections
cv2.imwrite(save_path, im0)
# Add bbox to the image
label = '%s %.2f' % (classes[int(cls)], conf)
plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[int(cls)])
print('Done. (%.3fs)' % (time.time() - t))
if platform == 'darwin': # MacOS
if save_images: # Save generated image with detections
cv2.imwrite(save_path, im0)
if webcam: # Show live webcam
cv2.imshow(weights, im0)
if save_images and (platform == 'darwin'): # MacOS
os.system('open ' + output + '&& open ' + save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-tiny.cfg', help='cfg file path')
parser.add_argument('--weights', type=str, default='weights/yolov3-tiny.pt', help='path to weights file')
parser.add_argument('--images', type=str, default='data/samples', help='path to images')
parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension')
parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold')

View File

@ -55,6 +55,42 @@ class LoadImages: # for inference
return self.nF # number of files
class LoadWebcam: # for inference
def __init__(self, path, img_size=416):
self.cam = cv2.VideoCapture(0)
self.nF = 9999 # number of image files
self.height = img_size
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if cv2.waitKey(1) == 27: # esc to quit
cv2.destroyAllWindows()
raise StopIteration
# Read image
ret_val, img0 = self.cam.read()
assert ret_val, 'Webcam Error'
img_path = 'webcam_%g.jpg' % self.count
img0 = cv2.flip(img0, 1)
# Padded resize
img, _, _, _ = letterbox(img0, height=self.height)
# Normalize RGB
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img, dtype=np.float32)
img /= 255.0
return img_path, img, img0
def __len__(self):
return self.nF # number of files
class LoadImagesAndLabels: # for training
def __init__(self, path, batch_size=1, img_size=608, multi_scale=False, augment=False):
self.path = path