car-detection-bayes/train.py

482 lines
23 KiB
Python
Raw Normal View History

2018-08-26 08:51:39 +00:00
import argparse
2019-07-25 11:19:26 +00:00
import torch.distributed as dist
2019-04-17 13:52:51 +00:00
import torch.optim as optim
2019-05-30 17:02:55 +00:00
import torch.optim.lr_scheduler as lr_scheduler
2019-03-21 12:48:40 +00:00
2019-06-24 11:43:17 +00:00
import test # import test.py to get mAP after each epoch
2018-08-26 08:51:39 +00:00
from models import *
from utils.datasets import *
from utils.utils import *
2019-07-24 16:02:26 +00:00
mixed_precision = True
try: # Mixed precision training https://github.com/NVIDIA/apex
from apex import amp
2019-08-01 16:29:57 +00:00
except:
mixed_precision = False # not installed
2019-07-24 16:02:26 +00:00
2019-09-17 22:38:49 +00:00
wdir = 'weights' + os.sep # weights dir
last = wdir + 'last.pt'
best = wdir + 'best.pt'
2019-09-17 22:54:07 +00:00
results_file = 'results.txt'
2019-09-17 22:38:49 +00:00
2020-03-29 20:29:06 +00:00
# Hyperparameters https://github.com/ultralytics/yolov3/issues/310
2019-12-07 08:01:18 +00:00
2019-12-07 07:58:47 +00:00
hyp = {'giou': 3.54, # giou loss gain
'cls': 37.4, # cls loss gain
2019-10-25 16:03:04 +00:00
'cls_pw': 1.0, # cls BCELoss positive_weight
2020-02-17 07:13:34 +00:00
'obj': 64.3, # obj loss gain (*=img_size/320 if img_size != 320)
2019-10-25 16:03:04 +00:00
'obj_pw': 1.0, # obj BCELoss positive_weight
2019-12-07 07:58:47 +00:00
'iou_t': 0.225, # iou training threshold
2020-03-04 21:06:31 +00:00
'lr0': 0.01, # initial learning rate (SGD=5E-3, Adam=5E-4)
2020-03-29 20:29:06 +00:00
'lrf': 0.0005, # final learning rate (with cos scheduler)
2019-12-07 07:58:47 +00:00
'momentum': 0.937, # SGD momentum
'weight_decay': 0.000484, # optimizer weight decay
'fl_gamma': 0.0, # focal loss gamma (efficientDet default is gamma=1.5)
2019-12-07 07:58:47 +00:00
'hsv_h': 0.0138, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.678, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.36, # image HSV-Value augmentation (fraction)
2020-03-10 19:17:23 +00:00
'degrees': 1.98 * 0, # image rotation (+/- deg)
'translate': 0.05 * 0, # image translation (+/- fraction)
'scale': 0.05 * 0, # image scale (+/- gain)
'shear': 0.641 * 0} # image shear (+/- deg)
2019-08-18 00:08:47 +00:00
2019-09-11 12:00:57 +00:00
# Overwrite hyp with hyp*.txt (optional)
f = glob.glob('hyp*.txt')
if f:
2019-12-01 21:51:55 +00:00
print('Using %s' % f[0])
2019-09-11 12:00:57 +00:00
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
hyp[k] = v
2019-09-11 11:15:16 +00:00
# Print focal loss if gamma > 0
if hyp['fl_gamma']:
print('Using FocalLoss(gamma=%g)' % hyp['fl_gamma'])
2019-08-18 11:05:32 +00:00
2019-08-23 11:25:27 +00:00
def train():
cfg = opt.cfg
data = opt.data
2020-01-11 00:09:36 +00:00
epochs = opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
2019-08-23 11:25:27 +00:00
batch_size = opt.batch_size
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
2019-08-23 13:17:17 +00:00
weights = opt.weights # initial training weights
2020-04-14 18:51:19 +00:00
imgsz_min, imgsz_max, imgsz_test = opt.img_size # img sizes (min, max, test)
2019-08-23 11:25:27 +00:00
2020-04-13 01:22:54 +00:00
# Image Sizes
gs = 64 # (pixels) grid size
assert math.fmod(imgsz_min, gs) == 0, '--img-size %g must be a %g-multiple' % (imgsz_min, gs)
opt.multi_scale |= imgsz_min != imgsz_max # multi if different (min, max)
2019-11-28 01:50:00 +00:00
if opt.multi_scale:
2020-04-13 01:22:54 +00:00
if imgsz_min == imgsz_max:
imgsz_min //= 1.5
imgsz_max //= 0.667
grid_min, grid_max = imgsz_min // gs, imgsz_max // gs
2020-04-14 18:51:19 +00:00
imgsz_min, imgsz_max = grid_min * gs, grid_max * gs
2020-04-14 19:02:08 +00:00
print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
2020-04-14 18:51:19 +00:00
img_size = imgsz_max # initialize with max size
2018-08-26 08:51:39 +00:00
# Configure run
2020-04-13 01:22:54 +00:00
init_seeds()
2019-07-20 13:10:31 +00:00
data_dict = parse_data_cfg(data)
2019-04-27 15:57:07 +00:00
train_path = data_dict['train']
2019-12-05 07:02:32 +00:00
test_path = data_dict['valid']
2020-01-18 01:52:28 +00:00
nc = 1 if opt.single_cls else int(data_dict['classes']) # number of classes
hyp['cls'] *= nc / 80 # update coco-tuned hyp['cls'] to current dataset
2018-08-26 08:51:39 +00:00
# Remove previous results
for f in glob.glob('*_batch*.png') + glob.glob(results_file):
os.remove(f)
2018-08-26 08:51:39 +00:00
# Initialize model
model = Darknet(cfg).to(device)
2018-08-26 08:51:39 +00:00
# Optimizer
2020-01-17 18:55:30 +00:00
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
2019-08-26 12:47:36 +00:00
for k, v in dict(model.named_parameters()).items():
2020-01-17 18:55:30 +00:00
if '.bias' in k:
pg2 += [v] # biases
elif 'Conv2d.weight' in k:
pg1 += [v] # apply weight_decay
2019-08-26 12:47:36 +00:00
else:
2020-01-17 18:55:30 +00:00
pg0 += [v] # all else
2019-08-26 12:47:36 +00:00
2019-09-11 12:25:48 +00:00
if opt.adam:
2020-01-20 00:55:29 +00:00
# hyp['lr0'] *= 0.1 # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
2019-09-11 12:25:48 +00:00
optimizer = optim.Adam(pg0, lr=hyp['lr0'])
# optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
2019-08-26 12:47:36 +00:00
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
2020-01-17 19:17:52 +00:00
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
2020-01-17 18:55:30 +00:00
del pg0, pg1, pg2
2018-08-26 08:51:39 +00:00
2019-02-22 15:15:20 +00:00
start_epoch = 0
2020-01-29 18:30:13 +00:00
best_fitness = 0.0
2019-09-19 16:05:04 +00:00
attempt_download(weights)
2019-08-23 13:17:17 +00:00
if weights.endswith('.pt'): # pytorch format
2019-11-15 01:22:09 +00:00
# possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
2019-08-23 13:17:17 +00:00
chkpt = torch.load(weights, map_location=device)
2019-04-02 16:04:04 +00:00
2019-08-23 13:17:17 +00:00
# load model
2019-11-25 21:45:28 +00:00
try:
chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
model.load_state_dict(chkpt['model'], strict=False)
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
"See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e
2019-04-02 16:04:04 +00:00
2019-08-23 13:17:17 +00:00
# load optimizer
2019-04-02 16:04:04 +00:00
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
2019-07-02 16:21:28 +00:00
best_fitness = chkpt['best_fitness']
2019-07-08 16:00:19 +00:00
2019-08-23 13:17:17 +00:00
# load results
if chkpt.get('training_results') is not None:
2019-09-18 00:25:09 +00:00
with open(results_file, 'w') as file:
2019-07-08 17:26:46 +00:00
file.write(chkpt['training_results']) # write results.txt
2019-07-08 16:00:19 +00:00
start_epoch = chkpt['epoch'] + 1
2019-04-02 16:04:04 +00:00
del chkpt
2018-10-30 14:18:52 +00:00
2019-08-23 13:37:25 +00:00
elif len(weights) > 0: # darknet format
2019-11-15 01:22:09 +00:00
# possible weights are '*.weights', 'yolov3-tiny.conv.15', 'darknet53.conv.74' etc.
2020-01-17 18:55:30 +00:00
load_darknet_weights(model, weights)
2018-10-30 14:18:52 +00:00
2020-02-27 21:40:14 +00:00
# Mixed precision training https://github.com/NVIDIA/apex
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
2019-04-24 10:58:14 +00:00
# Scheduler https://github.com/ultralytics/yolov3/issues/238
2020-04-02 21:08:21 +00:00
lf = lambda x: (((1 + math.cos(
x * math.pi / epochs)) / 2) ** 1.0) * 0.95 + 0.05 # cosine https://arxiv.org/pdf/1812.01187.pdf
2020-03-11 19:18:03 +00:00
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf, last_epoch=start_epoch - 1)
# scheduler = lr_scheduler.MultiStepLR(optimizer, [round(epochs * x) for x in [0.8, 0.9]], 0.1, start_epoch - 1)
2019-04-18 19:56:50 +00:00
2020-03-11 19:18:03 +00:00
# Plot lr schedule
2019-04-18 19:44:57 +00:00
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
2020-02-23 05:24:56 +00:00
# plt.plot(y, '.-', label='LambdaLR')
2019-04-24 10:58:14 +00:00
# plt.xlabel('epoch')
2019-06-21 11:19:23 +00:00
# plt.ylabel('LR')
2019-04-24 10:58:14 +00:00
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
2019-04-17 14:15:08 +00:00
2019-07-24 16:02:26 +00:00
# Initialize distributed training
2020-03-02 05:33:16 +00:00
if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
2019-07-24 16:02:26 +00:00
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:9999', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
2019-08-05 15:25:50 +00:00
model.yolo_layers = model.module.yolo_layers # move yolo layer indices to top level
2019-07-24 16:02:26 +00:00
# Dataset
2019-12-05 07:02:32 +00:00
dataset = LoadImagesAndLabels(train_path, img_size, batch_size,
2019-05-21 15:37:34 +00:00
augment=True,
2019-07-20 12:54:37 +00:00
hyp=hyp, # augmentation hyperparameters
2019-07-30 15:51:19 +00:00
rect=opt.rect, # rectangular training
2020-01-18 01:52:28 +00:00
cache_images=opt.cache_images,
single_cls=opt.single_cls)
# Dataloader
2019-11-21 03:34:22 +00:00
batch_size = min(batch_size, len(dataset))
2019-12-05 07:02:32 +00:00
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
2019-07-24 13:56:10 +00:00
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
2019-12-04 23:15:23 +00:00
num_workers=nw,
2019-07-24 13:56:10 +00:00
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
2018-08-26 08:51:39 +00:00
2020-01-11 00:09:36 +00:00
# Testloader
2020-04-14 18:51:19 +00:00
testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
2020-01-11 00:09:36 +00:00
hyp=hyp,
rect=True,
2020-01-18 01:52:28 +00:00
cache_images=opt.cache_images,
single_cls=opt.single_cls),
2020-03-30 03:41:32 +00:00
batch_size=batch_size,
2020-01-11 00:09:36 +00:00
num_workers=nw,
pin_memory=True,
collate_fn=dataset.collate_fn)
2019-12-05 07:02:32 +00:00
2020-03-14 03:12:54 +00:00
# Model parameters
2019-08-05 14:59:32 +00:00
model.nc = nc # attach number of classes to model
2019-04-17 13:52:51 +00:00
model.hyp = hyp # attach hyperparameters to model
2020-04-02 21:08:21 +00:00
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
2019-11-20 21:36:15 +00:00
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
2020-03-14 03:12:54 +00:00
# Model EMA
2020-03-29 20:14:54 +00:00
ema = torch_utils.ModelEMA(model)
2020-03-14 03:12:54 +00:00
# Start training
nb = len(dataloader) # number of batches
2020-04-09 04:34:34 +00:00
n_burn = max(3 * nb, 500) # burn-in iterations, max(3 epochs, 500 iterations)
2019-05-10 12:15:09 +00:00
maps = np.zeros(nc) # mAP per class
2019-11-26 03:24:05 +00:00
# torch.autograd.set_detect_anomaly(True)
2019-08-24 15:16:20 +00:00
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
2019-07-16 15:56:39 +00:00
t0 = time.time()
2019-12-09 01:57:23 +00:00
print('Using %g dataloader workers' % nw)
2020-01-11 00:09:36 +00:00
print('Starting training for %g epochs...' % epochs)
2020-02-24 20:21:47 +00:00
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
2018-09-20 16:03:19 +00:00
2019-07-30 15:51:19 +00:00
# Update image weights (optional)
if dataset.image_weights:
2019-08-01 23:33:24 +00:00
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
2019-07-30 15:51:19 +00:00
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
2019-05-10 12:15:09 +00:00
2019-08-24 14:43:43 +00:00
mloss = torch.zeros(4).to(device) # mean losses
2020-01-18 01:52:28 +00:00
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
2019-06-30 15:34:29 +00:00
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
2019-08-22 22:36:48 +00:00
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
2019-08-23 11:39:43 +00:00
ni = i + nb * epoch # number integrated batches (since train start)
2019-12-09 01:52:44 +00:00
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
2018-09-19 02:21:46 +00:00
2020-04-02 21:08:21 +00:00
# Burn-in
2020-04-09 04:01:58 +00:00
if ni <= n_burn * 2:
model.gr = np.interp(ni, [0, n_burn * 2], [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
2020-04-02 21:08:21 +00:00
if ni == n_burn: # burnin complete
print_model_biases(model)
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, [0, n_burn], [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
2020-03-31 02:27:42 +00:00
if 'momentum' in x:
2020-04-02 21:08:21 +00:00
x['momentum'] = np.interp(ni, [0, n_burn], [0.9, hyp['momentum']])
2020-02-06 04:35:54 +00:00
# Multi-Scale training
if opt.multi_scale:
2020-02-09 17:12:45 +00:00
if ni / accumulate % 1 == 0: #  adjust img_size (67% - 150%) every 1 batch
2020-04-13 01:22:54 +00:00
img_size = random.randrange(grid_min, grid_max + 1) * gs
2020-02-06 04:35:54 +00:00
sf = img_size / max(imgs.shape[2:]) # scale factor
if sf != 1:
2020-04-08 17:14:33 +00:00
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to 32-multiple)
2020-02-06 04:35:54 +00:00
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Run model
pred = model(imgs)
2019-03-07 16:16:38 +00:00
# Compute loss
2020-03-04 21:20:08 +00:00
loss, loss_items = compute_loss(pred, targets, model)
2019-08-31 15:55:19 +00:00
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results
2019-03-07 16:16:38 +00:00
2019-08-26 14:24:19 +00:00
# Scale loss by nominal batch_size of 64
loss *= batch_size / 64
2019-08-24 21:58:08 +00:00
2019-03-07 16:16:38 +00:00
# Compute gradient
2019-04-13 14:02:45 +00:00
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
2018-10-09 17:22:33 +00:00
2020-02-24 20:44:22 +00:00
# Optimize accumulated gradient
2019-08-23 11:31:32 +00:00
if ni % accumulate == 0:
2018-12-16 14:16:19 +00:00
optimizer.step()
optimizer.zero_grad()
2020-03-29 20:14:54 +00:00
ema.update(model)
2018-09-19 02:21:46 +00:00
2019-04-15 11:55:52 +00:00
# Print batch results
2019-05-23 10:32:11 +00:00
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
2020-02-06 04:27:01 +00:00
mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.3g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size)
2019-08-29 12:29:07 +00:00
pbar.set_description(s)
2019-08-24 19:20:25 +00:00
2020-03-31 02:27:42 +00:00
# Plot images with bounding boxes
if ni < 1:
f = 'train_batch%g.png' % i # filename
plot_images(imgs=imgs, targets=targets, paths=paths, fname=f)
if tb_writer:
tb_writer.add_image(f, cv2.imread(f)[:, :, ::-1], dataformats='HWC')
2020-04-05 02:34:39 +00:00
# tb_writer.add_graph(model, imgs) # add model to tensorboard
2020-03-31 02:27:42 +00:00
2019-08-29 12:29:07 +00:00
# end batch ------------------------------------------------------------------------------------------------
2020-02-24 20:44:22 +00:00
# Update scheduler
scheduler.step()
2019-08-29 12:29:07 +00:00
# Process epoch results
2020-03-29 20:14:54 +00:00
ema.update_attr(model)
2019-08-24 19:35:56 +00:00
final_epoch = epoch + 1 == epochs
2020-01-18 01:52:28 +00:00
if not opt.notest or final_epoch: # Calculate mAP
2019-12-20 17:07:25 +00:00
is_coco = any([x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
results, maps = test.test(cfg,
data,
2020-03-30 03:41:32 +00:00
batch_size=batch_size,
2020-04-14 18:51:19 +00:00
img_size=imgsz_test,
2020-03-29 20:14:54 +00:00
model=ema.ema,
2019-12-20 17:07:25 +00:00
save_json=final_epoch and is_coco,
2020-01-18 01:58:37 +00:00
single_cls=opt.single_cls,
dataloader=testloader)
2019-04-05 13:34:42 +00:00
# Write epoch results
2019-09-17 22:54:07 +00:00
with open(results_file, 'a') as f:
f.write(s + '%10.3g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
2020-01-11 00:09:36 +00:00
if len(opt.name) and opt.bucket:
2020-01-22 07:18:34 +00:00
os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))
2019-04-05 13:34:42 +00:00
2019-08-08 20:30:34 +00:00
# Write Tensorboard results
2019-08-09 14:37:19 +00:00
if tb_writer:
2020-04-05 02:34:39 +00:00
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
tb_writer.add_scalar(tag, x, epoch)
2019-08-08 20:30:34 +00:00
2019-08-24 19:20:25 +00:00
# Update best mAP
2020-01-29 18:30:13 +00:00
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
if fi > best_fitness:
best_fitness = fi
2019-03-19 08:38:32 +00:00
# Save training results
2020-01-11 00:09:36 +00:00
save = (not opt.nosave) or (final_epoch and not opt.evolve)
if save:
2019-09-17 22:54:07 +00:00
with open(results_file, 'r') as f:
2019-07-08 16:00:19 +00:00
# Create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
2019-09-17 22:54:07 +00:00
'training_results': f.read(),
2020-03-29 20:14:54 +00:00
'model': ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
2019-08-23 10:57:26 +00:00
'optimizer': None if final_epoch else optimizer.state_dict()}
2019-04-05 13:34:42 +00:00
2019-07-15 15:54:31 +00:00
# Save last checkpoint
torch.save(chkpt, last)
# Save best checkpoint
2020-04-02 21:08:21 +00:00
if (best_fitness == fi) and not final_epoch:
2019-04-02 16:04:04 +00:00
torch.save(chkpt, best)
2019-04-02 16:04:04 +00:00
# Save backup every 10 epochs (optional)
2020-01-22 00:18:24 +00:00
# if epoch > 0 and epoch % 10 == 0:
# torch.save(chkpt, wdir + 'backup%g.pt' % epoch)
2019-04-02 14:33:52 +00:00
2019-04-05 13:34:42 +00:00
# Delete checkpoint
2019-08-29 12:29:07 +00:00
del chkpt
# end epoch ----------------------------------------------------------------------------------------------------
2018-08-26 08:51:39 +00:00
2019-09-09 20:42:38 +00:00
# end training
2020-01-05 20:50:58 +00:00
n = opt.name
2020-01-11 00:09:36 +00:00
if len(n):
2020-01-05 20:50:58 +00:00
n = '_' + n if not n.isnumeric() else n
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
if os.path.exists(f1):
os.rename(f1, f2) # rename
ispt = f2.endswith('.pt') # is *.pt
strip_optimizer(f2) if ispt else None # strip optimizer
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
2019-11-18 02:48:50 +00:00
2020-01-13 00:18:29 +00:00
if not opt.evolve:
plot_results() # save as results.png
2019-08-24 19:39:25 +00:00
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
2019-07-24 17:31:38 +00:00
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
2019-07-23 22:22:07 +00:00
torch.cuda.empty_cache()
2019-10-15 23:40:40 +00:00
2019-04-17 14:15:08 +00:00
return results
2018-08-26 08:51:39 +00:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
2020-03-05 20:30:11 +00:00
parser.add_argument('--epochs', type=int, default=300) # 500200 batches at bs 16, 117263 COCO images = 273 epochs
2019-12-09 00:34:27 +00:00
parser.add_argument('--batch-size', type=int, default=16) # effective bs = batch_size * accumulate = 16 * 4 = 64
2019-12-02 19:31:19 +00:00
parser.add_argument('--accumulate', type=int, default=4, help='batches to accumulate before optimizing')
2019-12-15 20:47:53 +00:00
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path')
parser.add_argument('--data', type=str, default='data/coco2017.data', help='*.data path')
parser.add_argument('--multi-scale', action='store_true', help='adjust (67%% - 150%%) img_size every 10 batches')
2020-04-13 01:22:54 +00:00
parser.add_argument('--img-size', nargs='+', type=int, default=[512], help='[min_train, max-train, test] img sizes')
2019-07-08 13:02:20 +00:00
parser.add_argument('--rect', action='store_true', help='rectangular training')
2019-08-23 11:25:27 +00:00
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
2019-06-24 12:46:00 +00:00
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
2019-04-17 15:27:51 +00:00
parser.add_argument('--notest', action='store_true', help='only test final epoch')
2019-07-01 15:17:29 +00:00
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
2019-07-08 16:32:31 +00:00
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
2019-08-07 14:45:13 +00:00
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
2020-02-17 07:12:07 +00:00
parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='initial weights path')
2019-09-09 20:42:38 +00:00
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
2019-11-25 04:38:30 +00:00
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1 or cpu)')
2019-09-11 12:25:48 +00:00
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
2020-01-18 01:52:28 +00:00
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
opt = parser.parse_args()
2019-09-17 22:38:49 +00:00
opt.weights = last if opt.resume else opt.weights
2019-05-03 16:14:16 +00:00
print(opt)
2020-04-13 01:22:54 +00:00
opt.img_size.extend([opt.img_size[-1]] * (3 - len(opt.img_size))) # extend to 3 sizes (min, max, test)
2019-11-25 04:29:29 +00:00
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
2019-11-20 21:14:24 +00:00
if device.type == 'cpu':
mixed_precision = False
2019-12-22 04:17:56 +00:00
# scale hyp['obj'] by img_size (evolved at 320)
2020-01-18 03:42:04 +00:00
# hyp['obj'] *= opt.img_size[0] / 320.
2019-11-09 18:56:38 +00:00
2019-08-09 17:35:02 +00:00
tb_writer = None
2019-07-24 17:02:24 +00:00
if not opt.evolve: # Train normally
2019-08-09 14:37:19 +00:00
try:
# Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/
from torch.utils.tensorboard import SummaryWriter
tb_writer = SummaryWriter()
2020-04-06 23:33:23 +00:00
print("Run 'tensorboard --logdir=runs' to view tensorboard at http://localhost:6006/")
2019-08-09 14:37:19 +00:00
except:
2019-08-09 17:35:02 +00:00
pass
2019-08-08 20:30:34 +00:00
2019-08-24 19:20:25 +00:00
train() # train normally
2019-07-24 17:02:24 +00:00
else: # Evolve hyperparameters (optional)
2020-01-30 22:32:10 +00:00
opt.notest, opt.nosave = True, True # only test/save final epoch
2019-07-24 17:02:24 +00:00
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
2019-04-17 15:51:39 +00:00
2019-12-23 23:43:00 +00:00
for _ in range(1): # generations to evolve
2019-07-24 18:16:35 +00:00
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
2019-09-18 11:23:37 +00:00
# Select parent(s)
2020-01-12 23:56:42 +00:00
parent = 'single' # parent selection method: 'single' or 'weighted'
2020-01-22 19:06:52 +00:00
x = np.loadtxt('evolve.txt', ndmin=2)
2020-01-29 22:26:37 +00:00
n = min(5, len(x)) # number of previous results to consider
2020-01-22 19:06:52 +00:00
x = x[np.argsort(-fitness(x))][:n] # top n mutations
2020-01-23 02:17:08 +00:00
w = fitness(x) - fitness(x).min() # weights
2019-09-20 18:31:37 +00:00
if parent == 'single' or len(x) == 1:
2020-01-23 02:17:08 +00:00
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
2020-01-22 19:08:03 +00:00
elif parent == 'weighted':
2020-01-23 02:17:08 +00:00
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
2019-07-24 17:02:24 +00:00
# Mutate
2020-01-29 23:31:19 +00:00
method, mp, s = 3, 0.9, 0.2 # method, mutation probability, sigma
2020-01-29 22:26:37 +00:00
npr = np.random
npr.seed(int(time.time()))
2020-01-20 00:56:32 +00:00
g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1]) # gains
2020-01-12 23:56:42 +00:00
ng = len(g)
2020-01-15 06:22:24 +00:00
if method == 1:
2020-01-29 22:26:37 +00:00
v = (npr.randn(ng) * npr.random() * g * s + 1) ** 2.0
2020-01-15 06:22:24 +00:00
elif method == 2:
2020-01-29 22:26:37 +00:00
v = (npr.randn(ng) * npr.random(ng) * g * s + 1) ** 2.0
2020-01-15 06:22:24 +00:00
elif method == 3:
2020-01-12 23:56:42 +00:00
v = np.ones(ng)
2020-01-19 23:37:56 +00:00
while all(v == 1): # mutate until a change occurs (prevent duplicates)
2020-01-29 22:26:37 +00:00
# v = (g * (npr.random(ng) < mp) * npr.randn(ng) * s + 1) ** 2.0
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
2020-01-15 06:22:24 +00:00
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
2020-01-12 23:56:42 +00:00
hyp[k] = x[i + 7] * v[i] # mutate
2019-04-17 15:27:51 +00:00
2019-04-24 12:09:15 +00:00
# Clip to limits
2019-09-10 09:35:46 +00:00
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
2020-01-11 07:28:54 +00:00
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
2019-04-24 12:09:15 +00:00
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
2019-04-17 17:04:01 +00:00
2019-07-01 15:14:42 +00:00
# Train mutation
2019-08-23 11:25:27 +00:00
results = train()
2019-04-17 15:27:51 +00:00
# Write mutation results
2019-07-25 15:49:54 +00:00
print_mutation(hyp, results, opt.bucket)
# Plot results
2019-07-26 10:00:43 +00:00
# plot_evolution_results(hyp)