updates
This commit is contained in:
		
							parent
							
								
									4942aacef9
								
							
						
					
					
						commit
						e35397ee41
					
				|  | @ -86,7 +86,7 @@ GPUs | `batch_size` | images/sec | epoch time | epoch cost | |||
| K80 | 64 (32x2) | 11  | 175 min  | $0.58 | ||||
| T4 | 64 (32x2) | 40  | 49 min  | $0.29 | ||||
| T4 x2 | 64 (64x1) | 61  | 32 min  | $0.36 | ||||
| V100 | 64 (32x2) | 115 | 17 min | $0.24 | ||||
| V100 | 64 (32x2) | 122 | 16 min | $0.23 | ||||
| V100 x2 | 64 (64x1) | 150 | 13 min | $0.36 | ||||
| 2080Ti | 64 (32x2) | 81  | 24 min  | -  | ||||
| 2080Ti x2 | 64 (64x1) | 140  | 14 min  | -  | ||||
|  |  | |||
							
								
								
									
										2
									
								
								test.py
								
								
								
								
							
							
						
						
									
										2
									
								
								test.py
								
								
								
								
							|  | @ -64,8 +64,8 @@ def test(cfg, | |||
|     loss = torch.zeros(3) | ||||
|     jdict, stats, ap, ap_class = [], [], [], [] | ||||
|     for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): | ||||
|         imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0 | ||||
|         targets = targets.to(device) | ||||
|         imgs = imgs.to(device) | ||||
|         _, _, height, width = imgs.shape  # batch size, channels, height, width | ||||
| 
 | ||||
|         # Plot images with bounding boxes | ||||
|  |  | |||
							
								
								
									
										2
									
								
								train.py
								
								
								
								
							
							
						
						
									
										2
									
								
								train.py
								
								
								
								
							|  | @ -251,7 +251,7 @@ def train(): | |||
|         pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar | ||||
|         for i, (imgs, targets, paths, _) in pbar:  # batch ------------------------------------------------------------- | ||||
|             ni = i + nb * epoch  # number integrated batches (since train start) | ||||
|             imgs = imgs.to(device) | ||||
|             imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0 | ||||
|             targets = targets.to(device) | ||||
| 
 | ||||
|             # Multi-Scale training | ||||
|  |  | |||
|  | @ -487,8 +487,7 @@ class LoadImagesAndLabels(Dataset):  # for training/testing | |||
| 
 | ||||
|         # Convert | ||||
|         img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416 | ||||
|         img = np.ascontiguousarray(img, dtype=np.float32)  # uint8 to float32 | ||||
|         img /= 255.0  # 0 - 255 to 0.0 - 1.0 | ||||
|         img = np.ascontiguousarray(img) | ||||
| 
 | ||||
|         return torch.from_numpy(img), labels_out, img_path, ((h, w), (ratio, pad)) | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue