detailed image sizes report
This commit is contained in:
parent
029e137bc2
commit
763cdd5ae2
12
train.py
12
train.py
|
@ -60,7 +60,7 @@ def train():
|
|||
batch_size = opt.batch_size
|
||||
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
|
||||
weights = opt.weights # initial training weights
|
||||
imgsz_min, imgsz_max, img_size_test = opt.img_size # img sizes (min, max, test)
|
||||
imgsz_min, imgsz_max, imgsz_test = opt.img_size # img sizes (min, max, test)
|
||||
|
||||
# Image Sizes
|
||||
gs = 64 # (pixels) grid size
|
||||
|
@ -71,9 +71,9 @@ def train():
|
|||
imgsz_min //= 1.5
|
||||
imgsz_max //= 0.667
|
||||
grid_min, grid_max = imgsz_min // gs, imgsz_max // gs
|
||||
imgsz_max = grid_max * gs # initialize with maximum multi_scale size
|
||||
print('Using multi-scale %g - %g' % (grid_min * gs, imgsz_max))
|
||||
img_size = imgsz_max
|
||||
imgsz_min, imgsz_max = grid_min * gs, grid_max * gs
|
||||
print('Training image sizes %g - %g, testing image size %g' % (imgsz_min, imgsz_max, imgsz_test))
|
||||
img_size = imgsz_max # initialize with max size
|
||||
|
||||
# Configure run
|
||||
init_seeds()
|
||||
|
@ -192,7 +192,7 @@ def train():
|
|||
collate_fn=dataset.collate_fn)
|
||||
|
||||
# Testloader
|
||||
testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, img_size_test, batch_size,
|
||||
testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
|
||||
hyp=hyp,
|
||||
rect=True,
|
||||
cache_images=opt.cache_images,
|
||||
|
@ -310,7 +310,7 @@ def train():
|
|||
results, maps = test.test(cfg,
|
||||
data,
|
||||
batch_size=batch_size,
|
||||
img_size=img_size_test,
|
||||
img_size=imgsz_test,
|
||||
model=ema.ema,
|
||||
save_json=final_epoch and is_coco,
|
||||
single_cls=opt.single_cls,
|
||||
|
|
|
@ -573,9 +573,9 @@ def get_yolo_layers(model):
|
|||
def print_model_biases(model):
|
||||
# prints the bias neurons preceding each yolo layer
|
||||
print('\nModel Bias Summary: %8s%18s%18s%18s' % ('layer', 'regression', 'objectness', 'classification'))
|
||||
multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
for l in model.yolo_layers: # print pretrained biases
|
||||
try:
|
||||
try:
|
||||
multi_gpu = type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
for l in model.yolo_layers: # print pretrained biases
|
||||
if multi_gpu:
|
||||
na = model.module.module_list[l].na # number of anchors
|
||||
b = model.module.module_list[l - 1][0].bias.view(na, -1) # bias 3x85
|
||||
|
|
Loading…
Reference in New Issue