car-detection-bayes/Dockerfile

35 lines
1.3 KiB
Docker

# Start from Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:19.07-py3
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
# Install dependencies (pip or conda)
# RUN pip install -U -r requirements.txt
# RUN conda update -n base -c defaults conda
# RUN conda install -y -c anaconda future numpy opencv matplotlib tqdm pillow
# RUN conda install -y -c conda-forge scikit-image tensorboard pycocotools
# conda install pytorch torchvision -c pytorch
# Move model into container
# RUN mv yolov3-spp.pt ./weights
# --------------------------------------------------- Extras Below ---------------------------------------------------
# Build container
# rm -rf yolov3 # Warning: remove existing
# git clone https://github.com/ultralytics/yolov3 && cd yolov3 && python3 detect.py
# sudo docker image prune -af && sudo docker build -t friendlyhello . && sudo docker tag friendlyhello ultralytics/yolov3:v0
# Run container
# time sudo docker run -it --memory=8g --cpus=4 ultralytics/yolov3:v0 bash -c './run.sh /1047.tif /tmp && cat /tmp/1047.tif.txt'
# time sudo docker run -it --memory=8g --cpus=4 ultralytics/yolov3:v0 bash -c 'python3 detect.py'
# Push container to https://hub.docker.com/u/ultralytics
# sudo docker push ultralytics/xview:v30