# Start from Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch FROM nvcr.io/nvidia/pytorch:19.07-py3 # Create working directory RUN mkdir -p /usr/src/app WORKDIR /usr/src/app # Copy contents COPY . /usr/src/app # Install dependencies (pip or conda) # RUN pip install -U -r requirements.txt # RUN conda update -n base -c defaults conda # RUN conda install -y -c anaconda future numpy opencv matplotlib tqdm pillow # RUN conda install -y -c conda-forge scikit-image tensorboard pycocotools # conda install pytorch torchvision -c pytorch # Move model into container # RUN mv yolov3-spp.pt ./weights # --------------------------------------------------- Extras Below --------------------------------------------------- # Build container # rm -rf yolov3 # Warning: remove existing # git clone https://github.com/ultralytics/yolov3 && cd yolov3 && python3 detect.py # sudo docker image prune -af && sudo docker build -t friendlyhello . && sudo docker tag friendlyhello ultralytics/yolov3:v0 # Run container # time sudo docker run -it --memory=8g --cpus=4 ultralytics/yolov3:v0 bash -c './run.sh /1047.tif /tmp && cat /tmp/1047.tif.txt' # time sudo docker run -it --memory=8g --cpus=4 ultralytics/yolov3:v0 bash -c 'python3 detect.py' # Push container to https://hub.docker.com/u/ultralytics # sudo docker push ultralytics/xview:v30