183 lines
9.8 KiB
Markdown
Executable File
183 lines
9.8 KiB
Markdown
Executable File
<table style="width:100%">
|
|
<tr>
|
|
<td>
|
|
<img src="https://user-images.githubusercontent.com/26833433/61591130-f7beea00-abc2-11e9-9dc0-d6abcf41d713.jpg">
|
|
</td>
|
|
<td align="center">
|
|
<a href="https://www.ultralytics.com" target="_blank">
|
|
<img src="https://storage.googleapis.com/ultralytics/logo/logoname1000.png" width="160"></a>
|
|
<img src="https://user-images.githubusercontent.com/26833433/61591093-2b4d4480-abc2-11e9-8b46-d88eb1dabba1.jpg">
|
|
<a href="https://itunes.apple.com/app/id1452689527" target="_blank">
|
|
<img src="https://user-images.githubusercontent.com/26833433/50044365-9b22ac00-0082-11e9-862f-e77aee7aa7b0.png" width="180"></a>
|
|
</td>
|
|
<td>
|
|
<img src="https://user-images.githubusercontent.com/26833433/61591100-55066b80-abc2-11e9-9647-52c0e045b288.jpg">
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
# Introduction
|
|
|
|
This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license**. For more information please visit https://www.ultralytics.com.
|
|
|
|
# Description
|
|
|
|
The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. **Credit to Joseph Redmon for YOLO:** https://pjreddie.com/darknet/yolo/.
|
|
|
|
# Requirements
|
|
|
|
Python 3.7 or later with all of the `pip install -U -r requirements.txt` packages including:
|
|
- `torch >= 1.4`
|
|
- `opencv-python`
|
|
- `Pillow`
|
|
|
|
All dependencies are included in the associated docker images. Docker requirements are:
|
|
- Nvidia Driver >= 440.44
|
|
- Docker Engine - CE >= 19.03
|
|
|
|
# Tutorials
|
|
|
|
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) < highly recommended!!
|
|
* [Train Single Class](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Class)
|
|
* [Google Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb) with quick training, inference and testing examples
|
|
* [GCP Quickstart](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
|
|
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart)
|
|
* [A TensorRT Implementation of YOLOv3-SPP](https://github.com/wang-xinyu/tensorrtx/tree/master/yolov3-spp)
|
|
|
|
# Training
|
|
|
|
**Start Training:** `python3 train.py` to begin training after downloading COCO data with `data/get_coco2017.sh`. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.
|
|
|
|
**Resume Training:** `python3 train.py --resume` to resume training from `weights/last.pt`.
|
|
|
|
**Plot Training:** `from utils import utils; utils.plot_results()`
|
|
|
|
<img src="https://user-images.githubusercontent.com/26833433/78175826-599d4800-7410-11ea-87d4-f629071838f6.png" width="900">
|
|
|
|
## Image Augmentation
|
|
|
|
`datasets.py` applies OpenCV-powered (https://opencv.org/) augmentation to the input image. We use a **mosaic dataloader** (pictured below) to increase image variability during training.
|
|
|
|
<img src="https://user-images.githubusercontent.com/26833433/66699231-27beea80-ece5-11e9-9cad-bdf9d82c500a.jpg" width="900">
|
|
|
|
## Speed
|
|
|
|
https://cloud.google.com/deep-learning-vm/
|
|
**Machine type:** preemptible [n1-standard-16](https://cloud.google.com/compute/docs/machine-types) (16 vCPUs, 60 GB memory)
|
|
**CPU platform:** Intel Skylake
|
|
**GPUs:** K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.83/hr) CUDA with [Nvidia Apex](https://github.com/NVIDIA/apex) FP16/32
|
|
**HDD:** 1 TB SSD
|
|
**Dataset:** COCO train 2014 (117,263 images)
|
|
**Model:** `yolov3-spp.cfg`
|
|
**Command:** `python3 train.py --img 416 --batch 32 --accum 2`
|
|
|
|
GPU |n| `--batch --accum` | img/s | epoch<br>time | epoch<br>cost
|
|
--- |--- |--- |--- |--- |---
|
|
K80 |1| 32 x 2 | 11 | 175 min | $0.58
|
|
T4 |1<br>2| 32 x 2<br>64 x 1 | 41<br>61 | 48 min<br>32 min | $0.28<br>$0.36
|
|
V100 |1<br>2| 32 x 2<br>64 x 1 | 122<br>**178** | 16 min<br>**11 min** | **$0.23**<br>$0.31
|
|
2080Ti |1<br>2| 32 x 2<br>64 x 1 | 81<br>140 | 24 min<br>14 min | -<br>-
|
|
|
|
# Inference
|
|
|
|
```bash
|
|
python3 detect.py --source ...
|
|
```
|
|
|
|
- Image: `--source file.jpg`
|
|
- Video: `--source file.mp4`
|
|
- Directory: `--source dir/`
|
|
- Webcam: `--source 0`
|
|
- RTSP stream: `--source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa`
|
|
- HTTP stream: `--source http://wmccpinetop.axiscam.net/mjpg/video.mjpg`
|
|
|
|
**YOLOv3:** `python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.pt`
|
|
<img src="https://user-images.githubusercontent.com/26833433/64067835-51d5b500-cc2f-11e9-982e-843f7f9a6ea2.jpg" width="500">
|
|
|
|
**YOLOv3-tiny:** `python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.pt`
|
|
<img src="https://user-images.githubusercontent.com/26833433/64067834-51d5b500-cc2f-11e9-9357-c485b159a20b.jpg" width="500">
|
|
|
|
**YOLOv3-SPP:** `python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.pt`
|
|
<img src="https://user-images.githubusercontent.com/26833433/64067833-51d5b500-cc2f-11e9-8208-6fe197809131.jpg" width="500">
|
|
|
|
|
|
# Pretrained Weights
|
|
|
|
Download from: [https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0](https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0)
|
|
|
|
## Darknet Conversion
|
|
|
|
```bash
|
|
$ git clone https://github.com/ultralytics/yolov3 && cd yolov3
|
|
|
|
# convert darknet cfg/weights to pytorch model
|
|
$ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
|
|
Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'
|
|
|
|
# convert cfg/pytorch model to darknet weights
|
|
$ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
|
|
Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'
|
|
```
|
|
|
|
# mAP
|
|
|
|
<i></i> |Size |COCO mAP<br>@0.5...0.95 |COCO mAP<br>@0.5
|
|
--- | --- | --- | ---
|
|
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |320 |14.0<br>28.7<br>30.5<br>**37.7** |29.1<br>51.8<br>52.3<br>**56.8**
|
|
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |416 |16.0<br>31.2<br>33.9<br>**41.2** |33.0<br>55.4<br>56.9<br>**60.6**
|
|
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |512 |16.6<br>32.7<br>35.6<br>**42.6** |34.9<br>57.7<br>59.5<br>**62.4**
|
|
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |608 |16.6<br>33.1<br>37.0<br>**43.1** |35.4<br>58.2<br>60.7<br>**62.8**
|
|
|
|
- mAP@0.5 run at `--iou-thr 0.5`, mAP@0.5...0.95 run at `--iou-thr 0.7`
|
|
- Darknet results: https://arxiv.org/abs/1804.02767
|
|
|
|
```bash
|
|
$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 640 --augment
|
|
|
|
Namespace(augment=True, batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='coco2014.data', device='', img_size=640, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weight
|
|
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
|
|
|
|
Class Images Targets P R mAP@0.5 F1: 100%|█████████| 313/313 [03:00<00:00, 1.74it/s]
|
|
all 5e+03 3.51e+04 0.375 0.743 0.64 0.492
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.456
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.647
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.496
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.263
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.596
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.361
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.597
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.666
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.492
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.719
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.810
|
|
|
|
Speed: 17.5/2.3/19.9 ms inference/NMS/total per 640x640 image at batch-size 16
|
|
```
|
|
<!-- Speed: 11.4/2.2/13.6 ms inference/NMS/total per 608x608 image at batch-size 1 -->
|
|
|
|
|
|
# Reproduce Our Results
|
|
|
|
This command trains `yolov3-spp.cfg` from scratch to our mAP above. Training takes about one week on a 2080Ti.
|
|
```bash
|
|
$ python3 train.py --weights '' --cfg yolov3-spp.cfg --epochs 300 --batch 16 --accum 4 --multi
|
|
```
|
|
<img src="https://user-images.githubusercontent.com/26833433/77986559-408b7e80-72cc-11ea-9c4f-5d7820840a98.png" width="900">
|
|
|
|
# Reproduce Our Environment
|
|
|
|
To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
|
|
|
|
- **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
|
|
- **Google Colab Notebook** with 12 hours of free GPU time: [Google Colab Notebook](https://colab.sandbox.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb)
|
|
- **Docker Image** from https://hub.docker.com/r/ultralytics/yolov3. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart)
|
|
# Citation
|
|
|
|
[![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888)
|
|
|
|
# Contact
|
|
|
|
**Issues should be raised directly in the repository.** For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.
|