123 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
import argparse
 | 
						|
import time
 | 
						|
from sys import platform
 | 
						|
 | 
						|
from models import *
 | 
						|
from utils.datasets import *
 | 
						|
from utils.utils import *
 | 
						|
 | 
						|
 | 
						|
def detect(
 | 
						|
        cfg,
 | 
						|
        weights,
 | 
						|
        images,
 | 
						|
        output='output',  # output folder
 | 
						|
        img_size=416,
 | 
						|
        conf_thres=0.3,
 | 
						|
        nms_thres=0.45,
 | 
						|
        save_txt=False,
 | 
						|
        save_images=True,
 | 
						|
        webcam=False
 | 
						|
):
 | 
						|
    device = torch_utils.select_device()
 | 
						|
    if os.path.exists(output):
 | 
						|
        shutil.rmtree(output)  # delete output folder
 | 
						|
    os.makedirs(output)  # make new output folder
 | 
						|
 | 
						|
    # Initialize model
 | 
						|
    model = Darknet(cfg, img_size)
 | 
						|
 | 
						|
    # Load weights
 | 
						|
    if weights.endswith('.pt'):  # pytorch format
 | 
						|
        if weights.endswith('yolov3.pt') and not os.path.exists(weights):
 | 
						|
            if platform in ('darwin', 'linux'):  # linux/macos
 | 
						|
                os.system('wget https://storage.googleapis.com/ultralytics/yolov3.pt -O ' + weights)
 | 
						|
        model.load_state_dict(torch.load(weights, map_location=device)['model'])
 | 
						|
    else:  # darknet format
 | 
						|
        _ = load_darknet_weights(model, weights)
 | 
						|
 | 
						|
    model.to(device).eval()
 | 
						|
 | 
						|
    # Set Dataloader
 | 
						|
    if webcam:
 | 
						|
        save_images = False
 | 
						|
        dataloader = LoadWebcam(img_size=img_size)
 | 
						|
    else:
 | 
						|
        dataloader = LoadImages(images, img_size=img_size)
 | 
						|
 | 
						|
    # Get classes and colors
 | 
						|
    classes = load_classes(parse_data_cfg('cfg/coco.data')['names'])
 | 
						|
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))]
 | 
						|
 | 
						|
    for i, (path, img, im0) in enumerate(dataloader):
 | 
						|
        t = time.time()
 | 
						|
        save_path = str(Path(output) / Path(path).name)
 | 
						|
        if webcam:
 | 
						|
            print('webcam frame %g: ' % (i + 1), end='')
 | 
						|
        else:
 | 
						|
            print('image %g/%g %s: ' % (i + 1, len(dataloader), path), end='')
 | 
						|
 | 
						|
        # Get detections
 | 
						|
        img = torch.from_numpy(img).unsqueeze(0).to(device)
 | 
						|
        if ONNX_EXPORT:
 | 
						|
            torch.onnx.export(model, img, 'weights/model.onnx', verbose=True)
 | 
						|
            return
 | 
						|
        pred = model(img)
 | 
						|
        pred = pred[pred[:, :, 4] > conf_thres]  # remove boxes < threshold
 | 
						|
 | 
						|
        if len(pred) > 0:
 | 
						|
            # Run NMS on predictions
 | 
						|
            detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0]
 | 
						|
 | 
						|
            # Rescale boxes from 416 to true image size
 | 
						|
            scale_coords(img_size, detections[:, :4], im0.shape).round()
 | 
						|
 | 
						|
            # Print results to screen
 | 
						|
            unique_classes = detections[:, -1].cpu().unique()
 | 
						|
            for c in unique_classes:
 | 
						|
                n = (detections[:, -1].cpu() == c).sum()
 | 
						|
                print('%g %ss' % (n, classes[int(c)]), end=', ')
 | 
						|
 | 
						|
            # Draw bounding boxes and labels of detections
 | 
						|
            for *xyxy, conf, cls_conf, cls in detections:
 | 
						|
                if save_txt:  # Write to file
 | 
						|
                    with open(save_path + '.txt', 'a') as file:
 | 
						|
                        file.write(('%g ' * 6 + '\n') % (*xyxy, cls, cls_conf * conf))
 | 
						|
 | 
						|
                # Add bbox to the image
 | 
						|
                label = '%s %.2f' % (classes[int(cls)], conf)
 | 
						|
                plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
 | 
						|
 | 
						|
        print('Done. (%.3fs)' % (time.time() - t))
 | 
						|
 | 
						|
        if save_images:  # Save generated image with detections
 | 
						|
            cv2.imwrite(save_path, im0)
 | 
						|
 | 
						|
        if webcam:  # Show live webcam
 | 
						|
            cv2.imshow(weights, im0)
 | 
						|
 | 
						|
    if save_images and platform == 'darwin':  # macos
 | 
						|
        os.system('open ' + output + ' ' + save_path)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
 | 
						|
    parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='path to weights file')
 | 
						|
    parser.add_argument('--images', type=str, default='data/samples', help='path to images')
 | 
						|
    parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension')
 | 
						|
    parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold')
 | 
						|
    parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
 | 
						|
    opt = parser.parse_args()
 | 
						|
    print(opt)
 | 
						|
 | 
						|
    with torch.no_grad():
 | 
						|
        detect(
 | 
						|
            opt.cfg,
 | 
						|
            opt.weights,
 | 
						|
            opt.images,
 | 
						|
            img_size=opt.img_size,
 | 
						|
            conf_thres=opt.conf_thres,
 | 
						|
            nms_thres=opt.nms_thres
 | 
						|
        )
 |