Go to file
Glenn Jocher 47eab968ab updates 2019-03-26 18:02:57 +01:00
.github/ISSUE_TEMPLATE Update issue templates 2019-03-25 15:27:09 +01:00
cfg updates 2018-12-17 22:43:55 +01:00
data updates 2019-02-26 03:28:21 +01:00
utils updates 2019-03-26 18:02:57 +01:00
weights updates 2019-03-25 15:32:00 +01:00
.gitignore updates 2019-02-26 03:18:15 +01:00
LICENSE Initial commit 2018-08-26 10:51:39 +02:00
README.md Add collate_fn() to DataLoader (#163) 2019-03-25 14:59:38 +01:00
detect.py Add collate_fn() to DataLoader (#163) 2019-03-25 14:59:38 +01:00
models.py multi_thread dataloader 2019-03-21 14:48:40 +02:00
requirements.txt updates 2019-03-25 18:35:39 +01:00
test.py Add collate_fn() to DataLoader (#163) 2019-03-25 14:59:38 +01:00
train.py updates 2019-03-25 15:33:36 +01:00

README.md

v2.2 v3.0

Introduction

This directory contains python software and an iOS App developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.

Description

The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. **Credit to Joseph Redmon for YOLO: ** https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.7 or later with the following pip3 install -U -r requirements.txt packages:

  • numpy
  • torch >= 1.0.0
  • opencv-python
  • tqdm

Tutorials

Training

Start Training: Run train.py to begin training after downloading COCO data with data/get_coco_dataset.sh.

Resume Training: Run train.py --resume resumes training from the latest checkpoint weights/latest.pt.

Each epoch trains on 120,000 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set. Default training settings produce loss plots below, with training speed of 0.6 s/batch on a 1080 Ti (18 epochs/day) or 0.45 s/batch on a 2080 Ti.

from utils import utils; utils.plot_results() Alt

Image Augmentation

datasets.py applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied only during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.

Augmentation Description
Translation +/- 10% (vertical and horizontal)
Rotation +/- 5 degrees
Shear +/- 2 degrees (vertical and horizontal)
Scale +/- 10%
Reflection 50% probability (horizontal-only)
HSV Saturation +/- 50%
HSV Intensity +/- 50%

Speed

https://cloud.google.com/deep-learning-vm/
Machine type: n1-standard-8 (8 vCPUs, 30 GB memory)
CPU platform: Intel Skylake
GPUs: 1-4x P100 ($0.493/hr), 1-8x V100 ($0.803/hr)
HDD: 100 GB SSD
Dataset: COCO train 2014

GPUs batch_size batch time epoch time epoch cost
(images) (s/batch)
1 P100 16 0.39s 48min $0.39
2 P100 32 0.48s 29min $0.47
4 P100 64 0.65s 20min $0.65
1 V100 16 0.25s 31min $0.41
2 V100 32 0.29s 18min $0.48
4 V100 64 0.41s 13min $0.70
8 V100 128 0.49s 7min $0.80

Inference

Run detect.py to apply trained weights to an image, such as zidane.jpg from the data/samples folder:

YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights weights/yolov3.weights

YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.weights

YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights weights/yolov3-spp.weights

Webcam

Run detect.py with webcam=True to show a live webcam feed.

Pretrained Weights

mAP

  • Use test.py --weights weights/yolov3.weights to test the official YOLOv3 weights.
  • Use test.py --weights weights/latest.pt to test the latest training results.
  • Compare to official darknet results from https://arxiv.org/abs/1804.02767.
ultralytics/yolov3 darknet
YOLOv3-320 51.3 51.5
YOLOv3-416 54.9 55.3
YOLOv3-608 57.9 57.9
sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3
# bash yolov3/data/get_coco_dataset.sh
sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
cd yolov3

python3 test.py --save-json --conf-thres 0.001 --img-size 416
Namespace(batch_size=32, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.45, save_json=True, weights='weights/yolov3.weights')
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.308
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.549
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.310
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.141
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.334
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.454
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.403
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.428
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.464
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.585
 
python3 test.py --save-json --conf-thres 0.001 --img-size 608 --batch-size 16
Namespace(batch_size=16, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.45, save_json=True, weights='weights/yolov3.weights')
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.328
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.579
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.335
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.190
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.357
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.428
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.279
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.429
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.456
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.299
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.483
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.572

Contact

For questions or comments please contact Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.