car-detection-bayes/utils/utils.py

492 lines
18 KiB
Python
Executable File

import glob
import random
from collections import defaultdict
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import torch_utils
# Set printoptions
torch.set_printoptions(linewidth=1320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
def float3(x): # format floats to 3 decimals
return float(format(x, '.3f'))
def init_seeds(seed=0):
random.seed(seed)
np.random.seed(seed)
torch_utils.init_seeds(seed=seed)
def load_classes(path):
# Loads class labels at 'path'
fp = open(path, 'r')
names = fp.read().split('\n')
return list(filter(None, names)) # filter removes empty strings (such as last line)
def model_info(model):
# Plots a line-by-line description of a PyTorch model
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
print('\n%5s %38s %9s %12s %20s %12s %12s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (
i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
print('Model Summary: %g layers, %g parameters, %g gradients' % (i + 1, n_p, n_g))
def coco_class_weights(): # frequency of each class in coco train2014
weights = 1 / torch.FloatTensor(
[187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671,
6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689,
4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004,
5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933,
1877, 17630, 4337, 4624, 1075, 3468, 135, 1380])
weights /= weights.sum()
return weights
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
# x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
return x
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.03)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.03)
torch.nn.init.constant_(m.bias.data, 0.0)
def xyxy2xywh(x):
# Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
y[:, 2] = x[:, 2] - x[:, 0]
y[:, 3] = x[:, 3] - x[:, 1]
return y
def xywh2xyxy(x):
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x)
y[:, 0] = (x[:, 0] - x[:, 2] / 2)
y[:, 1] = (x[:, 1] - x[:, 3] / 2)
y[:, 2] = (x[:, 0] + x[:, 2] / 2)
y[:, 3] = (x[:, 1] + x[:, 3] / 2)
return y
def scale_coords(img_size, coords, img0_shape):
# Rescale x1, y1, x2, y2 from 416 to image size
gain = float(img_size) / max(img0_shape) # gain = old / new
pad_x = (img_size - img0_shape[1] * gain) / 2 # width padding
pad_y = (img_size - img0_shape[0] * gain) / 2 # height padding
coords[:, [0, 2]] -= pad_x
coords[:, [1, 3]] -= pad_y
coords[:, :4] /= gain
coords[:, :4] = torch.clamp(coords[:, :4], min=0)
return coords
def ap_per_class(tp, conf, pred_cls, target_cls):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (list).
conf: Objectness value from 0-1 (list).
pred_cls: Predicted object classes (list).
target_cls: True object classes (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
# Create Precision-Recall curve and compute AP for each class
ap, p, r = [], [], []
for c in unique_classes:
i = pred_cls == c
n_gt = sum(target_cls == c) # Number of ground truth objects
n_p = sum(i) # Number of predicted objects
if (n_p == 0) and (n_gt == 0):
continue
elif (n_p == 0) or (n_gt == 0):
ap.append(0)
r.append(0)
p.append(0)
else:
# Accumulate FPs and TPs
fpc = np.cumsum(1 - tp[i])
tpc = np.cumsum(tp[i])
# Recall
recall_curve = tpc / (n_gt + 1e-16)
r.append(tpc[-1] / (n_gt + 1e-16))
# Precision
precision_curve = tpc / (tpc + fpc)
p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
# AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve))
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p)
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def bbox_iou(box1, box2, x1y1x2y2=True):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.t()
# Get the coordinates of bounding boxes
if x1y1x2y2:
# x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else:
# x, y, w, h = box1
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter_area = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
union_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1) + 1e-16) + \
(b2_x2 - b2_x1) * (b2_y2 - b2_y1) - inter_area
return inter_area / union_area # iou
def wh_iou(box1, box2):
# Returns the IoU of wh1 to wh2. wh1 is 2, wh2 is nx2
box2 = box2.t()
# w, h = box1
w1, h1 = box1[0], box1[1]
w2, h2 = box2[0], box2[1]
# Intersection area
inter_area = torch.min(w1, w2) * torch.min(h1, h2)
# Union Area
union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area
return inter_area / union_area # iou
def compute_loss(p, targets): # predictions, targets
FT = torch.cuda.FloatTensor if p[0].is_cuda else torch.FloatTensor
loss, lxy, lwh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]), FT([0])
txy, twh, tcls, tconf, indices = targets
MSE = nn.MSELoss()
CE = nn.CrossEntropyLoss()
BCE = nn.BCEWithLogitsLoss()
# Compute losses
# gp = [x.numel() for x in tconf] # grid points
for i, pi0 in enumerate(p): # layer i predictions, i
b, a, gj, gi = indices[i] # image, anchor, gridx, gridy
# Compute losses
k = 1 # nT / bs
if len(b) > 0:
pi = pi0[b, a, gj, gi] # predictions closest to anchors
lxy += k * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy
lwh += k * MSE(pi[..., 2:4], twh[i]) # wh
lcls += (k / 4) * CE(pi[..., 5:], tcls[i])
# pos_weight = FT([gp[i] / min(gp) * 4.])
# BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
lconf += (k * 64) * BCE(pi0[..., 4], tconf[i])
loss = lxy + lwh + lconf + lcls
# Add to dictionary
d = defaultdict(float)
losses = [loss.item(), lxy.item(), lwh.item(), lconf.item(), lcls.item()]
for name, x in zip(['total', 'xy', 'wh', 'conf', 'cls'], losses):
d[name] = x
return loss, d
def build_targets(model, targets, pred):
# targets = [image, class, x, y, w, h]
if isinstance(model, nn.DataParallel):
model = model.module
yolo_layers = get_yolo_layers(model)
# anchors = closest_anchor(model, targets) # [layer, anchor, i, j]
txy, twh, tcls, tconf, indices = [], [], [], [], []
for i, layer in enumerate(yolo_layers):
nG = model.module_list[layer][0].nG # grid size
anchor_vec = model.module_list[layer][0].anchor_vec
# iou of targets-anchors
gwh = targets[:, 4:6] * nG
iou = [wh_iou(x, gwh) for x in anchor_vec]
iou, a = torch.stack(iou, 0).max(0) # best iou and anchor
# reject below threshold ious (OPTIONAL)
reject = True
if reject:
j = iou > 0.01
t, a, gwh = targets[j], a[j], gwh[j]
else:
t = targets
# Indices
b, c = t[:, 0:2].long().t() # target image, class
gxy = t[:, 2:4] * nG
gi, gj = gxy.long().t() # grid_i, grid_j
indices.append((b, a, gj, gi))
# XY coordinates
txy.append(gxy - gxy.floor())
# Width and height
twh.append(torch.log(gwh / anchor_vec[a])) # yolo method
# twh.append(torch.sqrt(gwh / anchor_vec[a]) / 2) # power method
# Class
tcls.append(c)
# Conf
tci = torch.zeros_like(pred[i][..., 0])
tci[b, a, gj, gi] = 1 # conf
tconf.append(tci)
return txy, twh, tcls, tconf, indices
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
"""
Removes detections with lower object confidence score than 'conf_thres'
Non-Maximum Suppression to further filter detections.
Returns detections with shape:
(x1, y1, x2, y2, object_conf, class_score, class_pred)
"""
output = [None for _ in range(len(prediction))]
for image_i, pred in enumerate(prediction):
# Experiment: Prior class size rejection
# x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
# a = w * h # area
# ar = w / (h + 1e-16) # aspect ratio
# n = len(w)
# log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar)
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
# x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1)
# from scipy.stats import multivariate_normal
# for c in range(60):
# shape_likelihood[:, c] =
# multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2])
# Filter out confidence scores below threshold
class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1)
v = pred[:, 4] > conf_thres
v = v.nonzero().squeeze()
if len(v.shape) == 0:
v = v.unsqueeze(0)
pred = pred[v]
class_prob = class_prob[v]
class_pred = class_pred[v]
# If none are remaining => process next image
nP = pred.shape[0]
if not nP:
continue
# From (center x, center y, width, height) to (x1, y1, x2, y2)
pred[:, :4] = xywh2xyxy(pred[:, :4])
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_prob, class_pred)
detections = torch.cat((pred[:, :5], class_prob.float().unsqueeze(1), class_pred.float().unsqueeze(1)), 1)
# Iterate through all predicted classes
unique_labels = detections[:, -1].cpu().unique().to(prediction.device)
nms_style = 'OR' # 'OR' (default), 'AND', 'MERGE' (experimental)
for c in unique_labels:
# Get the detections with class c
dc = detections[detections[:, -1] == c]
# Sort the detections by maximum object confidence
_, conf_sort_index = torch.sort(dc[:, 4] * dc[:, 5], descending=True)
dc = dc[conf_sort_index]
# Non-maximum suppression
det_max = []
ind = list(range(len(dc)))
if nms_style == 'OR': # default
while len(ind):
j = ind[0]
det_max.append(dc[j:j + 1]) # save highest conf detection
reject = bbox_iou(dc[j], dc[ind]) > nms_thres
[ind.pop(i) for i in reversed(reject.nonzero())]
# while dc.shape[0]: # SLOWER METHOD
# det_max.append(dc[:1]) # save highest conf detection
# if len(dc) == 1: # Stop if we're at the last detection
# break
# iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
# dc = dc[1:][iou < nms_thres] # remove ious > threshold
# Image Total P R mAP
# 4964 5000 0.629 0.594 0.586
elif nms_style == 'AND': # requires overlap, single boxes erased
while len(dc) > 1:
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
if iou.max() > 0.5:
det_max.append(dc[:1])
dc = dc[1:][iou < nms_thres] # remove ious > threshold
elif nms_style == 'MERGE': # weighted mixture box
while len(dc) > 0:
iou = bbox_iou(dc[0], dc[0:]) # iou with other boxes
i = iou > nms_thres
weights = dc[i, 4:5] * dc[i, 5:6]
dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum()
det_max.append(dc[:1])
dc = dc[iou < nms_thres]
# Image Total P R mAP
# 4964 5000 0.633 0.598 0.589 # normal
if len(det_max) > 0:
det_max = torch.cat(det_max)
# Add max detections to outputs
output[image_i] = det_max if output[image_i] is None else torch.cat((output[image_i], det_max))
return output
def get_yolo_layers(model):
bool_vec = [x['type'] == 'yolo' for x in model.module_defs]
return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3
def return_torch_unique_index(u, uv):
n = uv.shape[1] # number of columns
first_unique = torch.zeros(n, device=u.device).long()
for j in range(n):
first_unique[j] = (uv[:, j:j + 1] == u).all(0).nonzero()[0]
return first_unique
def strip_optimizer_from_checkpoint(filename='weights/best.pt'):
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
a = torch.load(filename, map_location='cpu')
a['optimizer'] = []
torch.save(a, filename.replace('.pt', '_lite.pt'))
def coco_class_count(path='../coco/labels/train2014/'):
# Histogram of occurrences per class
nC = 80 # number classes
x = np.zeros(nC, dtype='int32')
files = sorted(glob.glob('%s/*.*' % path))
for i, file in enumerate(files):
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
x += np.bincount(labels[:, 0].astype('int32'), minlength=nC)
print(i, len(files))
def coco_only_people(path='../coco/labels/val2014/'):
# Find images with only people
files = sorted(glob.glob('%s/*.*' % path))
for i, file in enumerate(files):
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
if all(labels[:, 0] == 0):
print(labels.shape[0], file)
def plot_results(start=0):
# Plot YOLO training results file 'results.txt'
# import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt')
# from utils.utils import *; plot_results()
plt.figure(figsize=(14, 7))
s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'Precision', 'Recall', 'mAP']
files = sorted(glob.glob('results*.txt'))
for f in files:
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11]).T # column 11 is mAP
x = range(1, results.shape[1])
for i in range(8):
plt.subplot(2, 4, i + 1)
plt.plot(results[i, x[start:]], marker='.', label=f)
plt.title(s[i])
if i == 0:
plt.legend()