car-detection-bayes/utils/utils.py

492 lines
18 KiB
Python
Raw Normal View History

2019-02-27 13:19:57 +00:00
import glob
2018-08-26 08:51:39 +00:00
import random
from collections import defaultdict
2018-08-26 08:51:39 +00:00
import cv2
2019-02-27 13:19:57 +00:00
import matplotlib.pyplot as plt
2018-08-26 08:51:39 +00:00
import numpy as np
import torch
import torch.nn as nn
2018-08-26 08:51:39 +00:00
import torch.nn.functional as F
from utils import torch_utils
2018-09-02 09:15:39 +00:00
# Set printoptions
2018-08-26 08:51:39 +00:00
torch.set_printoptions(linewidth=1320, precision=5, profile='long')
2018-10-03 11:55:56 +00:00
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
2018-08-26 08:51:39 +00:00
2019-02-26 13:57:28 +00:00
def float3(x): # format floats to 3 decimals
return float(format(x, '.3f'))
def init_seeds(seed=0):
random.seed(seed)
np.random.seed(seed)
torch_utils.init_seeds(seed=seed)
2018-08-26 08:51:39 +00:00
def load_classes(path):
# Loads class labels at 'path'
2019-01-06 20:54:04 +00:00
fp = open(path, 'r')
2018-12-28 20:12:31 +00:00
names = fp.read().split('\n')
return list(filter(None, names)) # filter removes empty strings (such as last line)
2018-08-26 08:51:39 +00:00
def model_info(model):
# Plots a line-by-line description of a PyTorch model
2018-11-22 12:52:22 +00:00
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
2019-03-19 13:50:15 +00:00
print('\n%5s %38s %9s %12s %20s %12s %12s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
2018-08-26 08:51:39 +00:00
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
2019-03-21 12:48:40 +00:00
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (
2018-08-26 08:51:39 +00:00
i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
print('Model Summary: %g layers, %g parameters, %g gradients' % (i + 1, n_p, n_g))
2018-08-26 08:51:39 +00:00
2019-02-19 18:00:44 +00:00
def coco_class_weights(): # frequency of each class in coco train2014
2018-08-26 08:51:39 +00:00
weights = 1 / torch.FloatTensor(
2018-10-10 14:16:17 +00:00
[187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671,
6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689,
4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004,
5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933,
1877, 17630, 4337, 4624, 1075, 3468, 135, 1380])
2018-08-26 08:51:39 +00:00
weights /= weights.sum()
2018-10-10 14:16:17 +00:00
return weights
2018-08-26 08:51:39 +00:00
2019-02-27 12:21:39 +00:00
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
2019-02-26 01:53:11 +00:00
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
2019-02-27 12:21:39 +00:00
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
# x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
2019-02-26 13:57:28 +00:00
return x
2019-02-26 01:53:11 +00:00
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
2018-09-08 12:46:22 +00:00
tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness
2018-08-26 08:51:39 +00:00
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
2018-09-02 09:15:39 +00:00
cv2.rectangle(img, c1, c2, color, thickness=tl)
2018-08-26 08:51:39 +00:00
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
2018-09-02 09:15:39 +00:00
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
2018-08-26 08:51:39 +00:00
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.03)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.03)
torch.nn.init.constant_(m.bias.data, 0.0)
2019-02-10 20:01:49 +00:00
def xyxy2xywh(x):
# Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
2019-03-17 22:48:56 +00:00
y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x)
2018-09-02 09:15:39 +00:00
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
y[:, 2] = x[:, 2] - x[:, 0]
y[:, 3] = x[:, 3] - x[:, 1]
return y
2019-02-10 20:01:49 +00:00
def xywh2xyxy(x):
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
2019-03-17 22:48:56 +00:00
y = torch.zeros_like(x) if x.dtype is torch.float32 else np.zeros_like(x)
2018-09-02 09:26:56 +00:00
y[:, 0] = (x[:, 0] - x[:, 2] / 2)
y[:, 1] = (x[:, 1] - x[:, 3] / 2)
y[:, 2] = (x[:, 0] + x[:, 2] / 2)
y[:, 3] = (x[:, 1] + x[:, 3] / 2)
2018-09-02 09:15:39 +00:00
return y
2018-08-26 08:51:39 +00:00
2019-02-10 20:01:49 +00:00
def scale_coords(img_size, coords, img0_shape):
# Rescale x1, y1, x2, y2 from 416 to image size
gain = float(img_size) / max(img0_shape) # gain = old / new
pad_x = (img_size - img0_shape[1] * gain) / 2 # width padding
pad_y = (img_size - img0_shape[0] * gain) / 2 # height padding
coords[:, [0, 2]] -= pad_x
coords[:, [1, 3]] -= pad_y
coords[:, :4] /= gain
2019-02-26 01:53:11 +00:00
coords[:, :4] = torch.clamp(coords[:, :4], min=0)
2019-02-10 20:01:49 +00:00
return coords
2018-09-10 13:12:13 +00:00
def ap_per_class(tp, conf, pred_cls, target_cls):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
2018-09-10 13:12:13 +00:00
# Arguments
tp: True positives (list).
conf: Objectness value from 0-1 (list).
pred_cls: Predicted object classes (list).
target_cls: True object classes (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
2018-09-10 14:41:02 +00:00
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
2018-09-10 13:12:13 +00:00
# Create Precision-Recall curve and compute AP for each class
2018-11-22 12:52:22 +00:00
ap, p, r = [], [], []
2018-09-10 13:12:13 +00:00
for c in unique_classes:
i = pred_cls == c
2018-09-10 13:50:37 +00:00
n_gt = sum(target_cls == c) # Number of ground truth objects
2018-09-10 14:31:56 +00:00
n_p = sum(i) # Number of predicted objects
2018-09-10 13:12:13 +00:00
2018-09-10 14:31:56 +00:00
if (n_p == 0) and (n_gt == 0):
continue
2018-11-22 12:52:22 +00:00
elif (n_p == 0) or (n_gt == 0):
2018-09-10 13:12:13 +00:00
ap.append(0)
2018-11-22 12:52:22 +00:00
r.append(0)
p.append(0)
2018-09-10 13:12:13 +00:00
else:
# Accumulate FPs and TPs
2018-11-22 12:52:22 +00:00
fpc = np.cumsum(1 - tp[i])
tpc = np.cumsum(tp[i])
2018-09-10 13:12:13 +00:00
# Recall
2018-11-22 12:52:22 +00:00
recall_curve = tpc / (n_gt + 1e-16)
r.append(tpc[-1] / (n_gt + 1e-16))
2018-09-10 13:12:13 +00:00
# Precision
2018-11-22 12:52:22 +00:00
precision_curve = tpc / (tpc + fpc)
p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
2018-09-10 13:12:13 +00:00
# AP from recall-precision curve
2018-11-22 12:52:22 +00:00
ap.append(compute_ap(recall_curve, precision_curve))
2018-09-10 13:12:13 +00:00
2018-11-22 12:52:22 +00:00
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p)
2018-09-10 13:12:13 +00:00
2018-08-26 08:51:39 +00:00
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rbgirshick/py-faster-rcnn.
2018-08-26 08:51:39 +00:00
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
2018-09-10 13:12:13 +00:00
2018-08-26 08:51:39 +00:00
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def bbox_iou(box1, box2, x1y1x2y2=True):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
2019-03-15 18:40:37 +00:00
box2 = box2.t()
# Get the coordinates of bounding boxes
2018-08-26 08:51:39 +00:00
if x1y1x2y2:
# x1, y1, x2, y2 = box1
2019-03-15 18:40:37 +00:00
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
2018-08-26 08:51:39 +00:00
else:
# x, y, w, h = box1
2019-03-15 18:40:37 +00:00
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
2018-08-26 08:51:39 +00:00
# Intersection area
inter_area = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
2018-08-26 08:51:39 +00:00
# Union Area
union_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1) + 1e-16) + \
(b2_x2 - b2_x1) * (b2_y2 - b2_y1) - inter_area
2018-08-26 08:51:39 +00:00
return inter_area / union_area # iou
2018-08-26 08:51:39 +00:00
2018-09-09 14:14:24 +00:00
def wh_iou(box1, box2):
# Returns the IoU of wh1 to wh2. wh1 is 2, wh2 is nx2
box2 = box2.t()
2018-09-09 14:14:24 +00:00
# w, h = box1
w1, h1 = box1[0], box1[1]
w2, h2 = box2[0], box2[1]
2018-08-26 08:51:39 +00:00
# Intersection area
inter_area = torch.min(w1, w2) * torch.min(h1, h2)
2018-08-26 08:51:39 +00:00
# Union Area
union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area
return inter_area / union_area # iou
def compute_loss(p, targets): # predictions, targets
FT = torch.cuda.FloatTensor if p[0].is_cuda else torch.FloatTensor
loss, lxy, lwh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0]), FT([0])
txy, twh, tcls, tconf, indices = targets
MSE = nn.MSELoss()
CE = nn.CrossEntropyLoss()
BCE = nn.BCEWithLogitsLoss()
# Compute losses
# gp = [x.numel() for x in tconf] # grid points
for i, pi0 in enumerate(p): # layer i predictions, i
b, a, gj, gi = indices[i] # image, anchor, gridx, gridy
# Compute losses
k = 1 # nT / bs
if len(b) > 0:
pi = pi0[b, a, gj, gi] # predictions closest to anchors
lxy += k * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy
lwh += k * MSE(pi[..., 2:4], twh[i]) # wh
lcls += (k / 4) * CE(pi[..., 5:], tcls[i])
# pos_weight = FT([gp[i] / min(gp) * 4.])
# BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
lconf += (k * 64) * BCE(pi0[..., 4], tconf[i])
loss = lxy + lwh + lconf + lcls
# Add to dictionary
d = defaultdict(float)
losses = [loss.item(), lxy.item(), lwh.item(), lconf.item(), lcls.item()]
for name, x in zip(['total', 'xy', 'wh', 'conf', 'cls'], losses):
d[name] = x
return loss, d
def build_targets(model, targets, pred):
# targets = [image, class, x, y, w, h]
if isinstance(model, nn.DataParallel):
model = model.module
yolo_layers = get_yolo_layers(model)
# anchors = closest_anchor(model, targets) # [layer, anchor, i, j]
txy, twh, tcls, tconf, indices = [], [], [], [], []
for i, layer in enumerate(yolo_layers):
nG = model.module_list[layer][0].nG # grid size
anchor_vec = model.module_list[layer][0].anchor_vec
# iou of targets-anchors
gwh = targets[:, 4:6] * nG
iou = [wh_iou(x, gwh) for x in anchor_vec]
iou, a = torch.stack(iou, 0).max(0) # best iou and anchor
# reject below threshold ious (OPTIONAL)
2019-03-19 09:38:01 +00:00
reject = True
if reject:
j = iou > 0.01
t, a, gwh = targets[j], a[j], gwh[j]
else:
t = targets
# Indices
b, c = t[:, 0:2].long().t() # target image, class
gxy = t[:, 2:4] * nG
gi, gj = gxy.long().t() # grid_i, grid_j
indices.append((b, a, gj, gi))
2018-08-26 08:51:39 +00:00
2019-02-19 21:19:59 +00:00
# XY coordinates
txy.append(gxy - gxy.floor())
2018-09-20 16:03:19 +00:00
2019-02-19 21:19:59 +00:00
# Width and height
twh.append(torch.log(gwh / anchor_vec[a])) # yolo method
# twh.append(torch.sqrt(gwh / anchor_vec[a]) / 2) # power method
2018-08-26 08:51:39 +00:00
# Class
tcls.append(c)
2018-08-26 08:51:39 +00:00
# Conf
tci = torch.zeros_like(pred[i][..., 0])
tci[b, a, gj, gi] = 1 # conf
tconf.append(tci)
return txy, twh, tcls, tconf, indices
2018-08-26 08:51:39 +00:00
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
"""
2019-02-18 16:48:35 +00:00
Removes detections with lower object confidence score than 'conf_thres'
2018-08-26 08:51:39 +00:00
Non-Maximum Suppression to further filter detections.
Returns detections with shape:
(x1, y1, x2, y2, object_conf, class_score, class_pred)
"""
output = [None for _ in range(len(prediction))]
for image_i, pred in enumerate(prediction):
2019-01-02 15:32:38 +00:00
# Experiment: Prior class size rejection
# x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
# a = w * h # area
# ar = w / (h + 1e-16) # aspect ratio
2018-08-26 08:51:39 +00:00
# n = len(w)
2019-01-02 15:32:38 +00:00
# log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar)
2018-08-26 08:51:39 +00:00
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
# x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1)
# from scipy.stats import multivariate_normal
# for c in range(60):
2019-02-11 17:15:51 +00:00
# shape_likelihood[:, c] =
# multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2])
2018-08-26 08:51:39 +00:00
# Filter out confidence scores below threshold
2018-08-26 08:51:39 +00:00
class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1)
2019-02-26 23:04:41 +00:00
v = pred[:, 4] > conf_thres
v = v.nonzero().squeeze()
if len(v.shape) == 0:
v = v.unsqueeze(0)
2018-08-26 08:51:39 +00:00
pred = pred[v]
class_prob = class_prob[v]
class_pred = class_pred[v]
# If none are remaining => process next image
nP = pred.shape[0]
if not nP:
continue
# From (center x, center y, width, height) to (x1, y1, x2, y2)
2018-12-19 22:48:52 +00:00
pred[:, :4] = xywh2xyxy(pred[:, :4])
2018-08-26 08:51:39 +00:00
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_prob, class_pred)
detections = torch.cat((pred[:, :5], class_prob.float().unsqueeze(1), class_pred.float().unsqueeze(1)), 1)
# Iterate through all predicted classes
unique_labels = detections[:, -1].cpu().unique().to(prediction.device)
2018-08-26 08:51:39 +00:00
2019-03-05 16:10:34 +00:00
nms_style = 'OR' # 'OR' (default), 'AND', 'MERGE' (experimental)
2018-08-26 08:51:39 +00:00
for c in unique_labels:
2019-02-18 17:32:31 +00:00
# Get the detections with class c
dc = detections[detections[:, -1] == c]
# Sort the detections by maximum object confidence
2019-02-18 18:44:15 +00:00
_, conf_sort_index = torch.sort(dc[:, 4] * dc[:, 5], descending=True)
2019-02-18 17:32:31 +00:00
dc = dc[conf_sort_index]
2018-08-26 08:51:39 +00:00
2019-02-18 17:32:31 +00:00
# Non-maximum suppression
det_max = []
2019-03-15 18:40:37 +00:00
ind = list(range(len(dc)))
2019-02-27 11:52:02 +00:00
if nms_style == 'OR': # default
2019-03-15 18:40:37 +00:00
while len(ind):
j = ind[0]
det_max.append(dc[j:j + 1]) # save highest conf detection
reject = bbox_iou(dc[j], dc[ind]) > nms_thres
2019-03-15 18:40:37 +00:00
[ind.pop(i) for i in reversed(reject.nonzero())]
# while dc.shape[0]: # SLOWER METHOD
2019-03-15 18:40:37 +00:00
# det_max.append(dc[:1]) # save highest conf detection
# if len(dc) == 1: # Stop if we're at the last detection
# break
# iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
2019-03-15 18:40:37 +00:00
# dc = dc[1:][iou < nms_thres] # remove ious > threshold
2019-02-18 17:32:31 +00:00
2019-02-18 18:13:40 +00:00
# Image Total P R mAP
2019-02-18 18:58:01 +00:00
# 4964 5000 0.629 0.594 0.586
2019-02-18 18:13:40 +00:00
2019-02-18 17:32:31 +00:00
elif nms_style == 'AND': # requires overlap, single boxes erased
while len(dc) > 1:
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
2019-02-18 17:32:31 +00:00
if iou.max() > 0.5:
det_max.append(dc[:1])
dc = dc[1:][iou < nms_thres] # remove ious > threshold
elif nms_style == 'MERGE': # weighted mixture box
while len(dc) > 0:
iou = bbox_iou(dc[0], dc[0:]) # iou with other boxes
2019-02-18 18:31:00 +00:00
i = iou > nms_thres
2019-02-18 18:13:40 +00:00
2019-02-18 18:24:53 +00:00
weights = dc[i, 4:5] * dc[i, 5:6]
2019-02-18 18:13:40 +00:00
dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum()
det_max.append(dc[:1])
2019-02-18 18:31:00 +00:00
dc = dc[iou < nms_thres]
2019-02-18 18:13:40 +00:00
# Image Total P R mAP
2019-02-18 18:58:01 +00:00
# 4964 5000 0.633 0.598 0.589 # normal
2018-08-26 08:51:39 +00:00
2019-01-02 15:32:38 +00:00
if len(det_max) > 0:
2019-02-18 17:32:31 +00:00
det_max = torch.cat(det_max)
2018-08-26 08:51:39 +00:00
# Add max detections to outputs
2019-01-02 15:32:38 +00:00
output[image_i] = det_max if output[image_i] is None else torch.cat((output[image_i], det_max))
2018-08-26 08:51:39 +00:00
return output
def get_yolo_layers(model):
bool_vec = [x['type'] == 'yolo' for x in model.module_defs]
return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3
2019-02-28 14:40:30 +00:00
def return_torch_unique_index(u, uv):
n = uv.shape[1] # number of columns
first_unique = torch.zeros(n, device=u.device).long()
for j in range(n):
first_unique[j] = (uv[:, j:j + 1] == u).all(0).nonzero()[0]
return first_unique
2018-10-26 22:42:34 +00:00
def strip_optimizer_from_checkpoint(filename='weights/best.pt'):
2018-08-26 08:51:39 +00:00
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
a = torch.load(filename, map_location='cpu')
a['optimizer'] = []
torch.save(a, filename.replace('.pt', '_lite.pt'))
2018-12-03 20:08:45 +00:00
def coco_class_count(path='../coco/labels/train2014/'):
# Histogram of occurrences per class
2018-10-10 14:16:17 +00:00
nC = 80 # number classes
x = np.zeros(nC, dtype='int32')
files = sorted(glob.glob('%s/*.*' % path))
for i, file in enumerate(files):
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
x += np.bincount(labels[:, 0].astype('int32'), minlength=nC)
print(i, len(files))
2019-02-20 14:11:55 +00:00
def coco_only_people(path='../coco/labels/val2014/'):
# Find images with only people
2019-02-20 14:11:55 +00:00
files = sorted(glob.glob('%s/*.*' % path))
for i, file in enumerate(files):
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
if all(labels[:, 0] == 0):
print(labels.shape[0], file)
def plot_results(start=0):
2018-11-22 12:52:22 +00:00
# Plot YOLO training results file 'results.txt'
# import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt')
# from utils.utils import *; plot_results()
2019-01-02 15:32:38 +00:00
2019-02-20 14:11:55 +00:00
plt.figure(figsize=(14, 7))
s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'Precision', 'Recall', 'mAP']
2019-02-18 14:51:35 +00:00
files = sorted(glob.glob('results*.txt'))
2018-12-03 14:42:10 +00:00
for f in files:
2019-02-20 14:11:55 +00:00
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11]).T # column 11 is mAP
2019-02-27 13:45:39 +00:00
x = range(1, results.shape[1])
2019-02-19 18:55:33 +00:00
for i in range(8):
plt.subplot(2, 4, i + 1)
plt.plot(results[i, x[start:]], marker='.', label=f)
2018-08-26 08:51:39 +00:00
plt.title(s[i])
2018-11-11 17:58:41 +00:00
if i == 0:
plt.legend()