This commit is contained in:
Glenn Jocher 2019-10-08 19:07:28 +02:00
parent 8b2f85c290
commit af5f7a15c5
2 changed files with 32 additions and 4 deletions

View File

@ -357,10 +357,15 @@ class LoadImagesAndLabels(Dataset): # for training/testing
f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name) f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
if not os.path.exists(Path(f).parent): if not os.path.exists(Path(f).parent):
os.makedirs(Path(f).parent) # make new output folder os.makedirs(Path(f).parent) # make new output folder
box = xywh2xyxy(x[1:].reshape(-1, 4) * np.array([1, 1, 1.5, 1.5])).ravel()
b = np.clip(box, 0, 1) # clip boxes outside of image b = x[1:] * np.array([w, h, w, h]) # box
ret_val = cv2.imwrite(f, img[int(b[1] * h):int(b[3] * h), int(b[0] * w):int(b[2] * w)]) b[2:] = b[2:].max() # rectangle to square
assert ret_val, 'Failure extracting classifier boxes' b[2:] = b[2:] * 1.3 + 30 # pad
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
else: else:
ne += 1 # file empty ne += 1 # file empty

View File

@ -624,6 +624,29 @@ def select_best_evolve(path='evolve*.txt'): # from utils.utils import *; select
print(file, x[fitness(x).argmax()]) print(file, x[fitness(x).argmax()])
def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random()
# crops images into random squares up to scale fraction
# WARNING: overwrites images!
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
img = cv2.imread(file) # BGR
if img is not None:
h, w = img.shape[:2]
# create random mask
a = 30 # minimum size (pixels)
mask_h = random.randint(a, int(max(a, h * scale))) # mask height
mask_w = mask_h # mask width
# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)
# apply random color mask
cv2.imwrite(file, img[ymin:ymax, xmin:xmax])
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
# Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels() # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels()
if os.path.exists('new/'): if os.path.exists('new/'):