updates
This commit is contained in:
parent
19d2232665
commit
8f609246db
7
train.py
7
train.py
|
@ -74,8 +74,9 @@ def train(
|
|||
device = torch_utils.select_device()
|
||||
torch.backends.cudnn.benchmark = True # possibly unsuitable for multiscale
|
||||
img_size_test = img_size # image size for testing
|
||||
multi_scale = not opt.single_scale
|
||||
|
||||
if opt.multi_scale:
|
||||
if multi_scale:
|
||||
img_size_min = round(img_size / 32 / 1.5)
|
||||
img_size_max = round(img_size / 32 * 1.5)
|
||||
img_size = img_size_max * 32 # initiate with maximum multi_scale size
|
||||
|
@ -203,7 +204,7 @@ def train(
|
|||
targets = targets.to(device)
|
||||
|
||||
# Multi-Scale training
|
||||
if opt.multi_scale:
|
||||
if multi_scale:
|
||||
if (i + 1 + nb * epoch) % 10 == 0: # adjust (67% - 150%) every 10 batches
|
||||
img_size = random.choice(range(img_size_min, img_size_max + 1)) * 32
|
||||
print('img_size = %g' % img_size)
|
||||
|
@ -310,7 +311,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--accumulate', type=int, default=8, help='number of batches to accumulate before optimizing')
|
||||
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
|
||||
parser.add_argument('--data-cfg', type=str, default='data/coco_64img.data', help='coco.data file path')
|
||||
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
|
||||
parser.add_argument('--single-scale', action='store_true', help='train at fixed size (no multi-scale)')
|
||||
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
|
||||
parser.add_argument('--resume', action='store_true', help='resume training flag')
|
||||
parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
|
||||
|
|
Loading…
Reference in New Issue