updates
This commit is contained in:
parent
1e8df4db23
commit
19d2232665
|
@ -274,6 +274,7 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
|||
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
|
||||
lxy, lwh, lcls, lconf, lgiou = ft([0]), ft([0]), ft([0]), ft([0]), ft([0])
|
||||
txy, twh, tcls, tbox, indices, anchor_vec = build_targets(model, targets)
|
||||
h = model.hyp # hyperparameters
|
||||
|
||||
# Define criteria
|
||||
MSE = nn.MSELoss()
|
||||
|
@ -281,7 +282,6 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
|||
BCE = nn.BCEWithLogitsLoss()
|
||||
|
||||
# Compute losses
|
||||
h = model.hyp # hyperparameters
|
||||
bs = p[0].shape[0] # batch size
|
||||
k = bs # loss gain
|
||||
for i, pi0 in enumerate(p): # layer i predictions, i
|
||||
|
@ -303,8 +303,6 @@ def compute_loss(p, targets, model): # predictions, targets, model
|
|||
lwh += (k * h['wh']) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss
|
||||
lcls += (k * h['cls']) * CE(pi[..., 5:], tcls[i]) # class_conf loss
|
||||
|
||||
# pos_weight = ft([gp[i] / min(gp) * 4.])
|
||||
# BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
|
||||
lconf += (k * h['conf']) * BCE(pi0[..., 4], tconf) # obj_conf loss
|
||||
loss = lxy + lwh + lconf + lcls
|
||||
|
||||
|
|
Loading…
Reference in New Issue