train.py remove hardcoded weights/ path for weights.

If I want to store my weights in 'weights2' path:
python train.py --weights-path weights2

Default is the same: weights
This commit is contained in:
Guillermo García 2018-12-05 15:27:48 +01:00
parent 9c0c1f23ab
commit 868a116750
1 changed files with 32 additions and 10 deletions

View File

@ -11,6 +11,11 @@ from utils import torch_utils
# Import test.py to get mAP after each epoch
import test
DARKNET_WEIGHTS_FILENAME = 'darknet53.conv.74'
DARKNET_WEIGHTS_URL = 'https://pjreddie.com/media/files/{}'.format(
DARKNET_WEIGHTS_FILENAME
)
def train(
net_config_path,
@ -19,6 +24,7 @@ def train(
resume=False,
epochs=100,
batch_size=16,
weights_path='weights',
report=False,
multi_scale=False,
freeze_backbone=True,
@ -31,12 +37,14 @@ def train(
if not multi_scale:
torch.backends.cudnn.benchmark = True
os.makedirs('weights', exist_ok=True)
os.makedirs(weights_path, exist_ok=True)
latest_weights_file = os.path.join(weights_path, 'latest.pt')
best_weights_file = os.path.join(weights_path, 'best.pt')
# Configure run
data_config = parse_data_config(data_config_path)
num_classes = int(data_config['classes'])
train_path = '../coco/trainvalno5k.txt'
train_path = data_config['train']
# Initialize model
model = Darknet(net_config_path, img_size)
@ -50,7 +58,7 @@ def train(
lr0 = 0.001
if resume:
checkpoint = torch.load('weights/latest.pt', map_location='cpu')
checkpoint = torch.load(latest_weights_file, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if torch.cuda.device_count() > 1:
@ -79,9 +87,13 @@ def train(
best_loss = float('inf')
# Initialize model with darknet53 weights (optional)
if not os.path.isfile('weights/darknet53.conv.74'):
os.system('wget https://pjreddie.com/media/files/darknet53.conv.74 -P weights')
load_weights(model, 'weights/darknet53.conv.74')
def_weight_file = os.path.join(weights_path, DARKNET_WEIGHTS_FILENAME)
if not os.path.isfile(def_weight_file):
os.system('wget {} -P {}'.format(
DARKNET_WEIGHTS_URL,
weights_path))
assert os.path.isfile(def_weight_file)
load_weights(model, def_weight_file)
if torch.cuda.device_count() > 1:
raise Exception('Multi-GPU not currently supported: https://github.com/ultralytics/yolov3/issues/21')
@ -187,21 +199,29 @@ def train(
'best_loss': best_loss,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, 'weights/latest.pt')
torch.save(checkpoint, latest_weights_file)
# Save best checkpoint
if best_loss == loss_per_target:
os.system('cp weights/latest.pt weights/best.pt')
os.system('cp {} {}'.format(
latest_weights_file,
best_weights_file,
))
# Save backup weights every 5 epochs
if (epoch > 0) & (epoch % 5 == 0):
os.system('cp weights/latest.pt weights/backup' + str(epoch) + '.pt')
backup_file_name = 'backup{}.pt'.format(epoch)
backup_file_path = os.path.join(weights_path, backup_file_name)
os.system('cp {} {}'.format(
latest_weights_file,
backup_file_path,
))
# Calculate mAP
mAP, R, P = test.test(
net_config_path,
data_config_path,
'weights/latest.pt',
latest_weights_file,
batch_size=batch_size,
img_size=img_size,
)
@ -224,6 +244,7 @@ if __name__ == '__main__':
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--multi-scale', default=False, help='random image sizes per batch 320 - 608')
parser.add_argument('--img-size', type=int, default=32 * 13, help='pixels')
parser.add_argument('--weights-path', type=str, default='weights', help='path to store weights')
parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--report', action='store_true', help='report TP, FP, FN, P and R per batch (slower)')
parser.add_argument('--freeze-darknet53', default=False, help='freeze darknet53.conv.74 layers for first epoch')
@ -241,6 +262,7 @@ if __name__ == '__main__':
resume=opt.resume,
epochs=opt.epochs,
batch_size=opt.batch_size,
weights_path=opt.weights_path,
report=opt.report,
multi_scale=opt.multi_scale,
freeze_backbone=opt.freeze_darknet53,