car-detection-bayes/train.py

271 lines
9.5 KiB
Python

import argparse
import sys
import time
from models import *
from utils.datasets import *
from utils.utils import *
from utils import torch_utils
# Import test.py to get mAP after each epoch
import test
DARKNET_WEIGHTS_FILENAME = 'darknet53.conv.74'
DARKNET_WEIGHTS_URL = 'https://pjreddie.com/media/files/{}'.format(
DARKNET_WEIGHTS_FILENAME
)
def train(
net_config_path,
data_config_path,
img_size=416,
resume=False,
epochs=100,
batch_size=16,
weights_path='weights',
report=False,
multi_scale=False,
freeze_backbone=True,
var=0,
):
device = torch_utils.select_device()
print("Using device: \"{}\"".format(device))
if not multi_scale:
torch.backends.cudnn.benchmark = True
os.makedirs(weights_path, exist_ok=True)
latest_weights_file = os.path.join(weights_path, 'latest.pt')
best_weights_file = os.path.join(weights_path, 'best.pt')
# Configure run
data_config = parse_data_config(data_config_path)
num_classes = int(data_config['classes'])
train_path = data_config['train']
# Initialize model
model = Darknet(net_config_path, img_size)
# Get dataloader
if multi_scale: # pass maximum multi_scale size
img_size = 608
dataloader = load_images_and_labels(train_path, batch_size=batch_size, img_size=img_size,
multi_scale=multi_scale, augment=True)
lr0 = 0.001
if resume:
checkpoint = torch.load(latest_weights_file, map_location='cpu')
model.load_state_dict(checkpoint['model'])
if torch.cuda.device_count() > 1:
raise Exception('Multi-GPU not currently supported: https://github.com/ultralytics/yolov3/issues/21')
# print('Using ', torch.cuda.device_count(), ' GPUs')
# model = nn.DataParallel(model)
model.to(device).train()
# # Transfer learning (train only YOLO layers)
# for i, (name, p) in enumerate(model.named_parameters()):
# if p.shape[0] != 650: # not YOLO layer
# p.requires_grad = False
# Set optimizer
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr0, momentum=.9)
start_epoch = checkpoint['epoch'] + 1
if checkpoint['optimizer'] is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
best_loss = checkpoint['best_loss']
del checkpoint # current, saved
else:
start_epoch = 0
best_loss = float('inf')
# Initialize model with darknet53 weights (optional)
def_weight_file = os.path.join(weights_path, DARKNET_WEIGHTS_FILENAME)
if not os.path.isfile(def_weight_file):
os.system('wget {} -P {}'.format(
DARKNET_WEIGHTS_URL,
weights_path))
assert os.path.isfile(def_weight_file)
load_weights(model, def_weight_file)
if torch.cuda.device_count() > 1:
raise Exception('Multi-GPU not currently supported: https://github.com/ultralytics/yolov3/issues/21')
# print('Using ', torch.cuda.device_count(), ' GPUs')
# model = nn.DataParallel(model)
model.to(device).train()
# Set optimizer
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr0, momentum=.9)
# Set scheduler
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[54, 61], gamma=0.1)
model_info(model)
t0, t1 = time.time(), time.time()
mean_recall, mean_precision = 0, 0
print('%11s' * 16 % (
'Epoch', 'Batch', 'x', 'y', 'w', 'h', 'conf', 'cls', 'total', 'P', 'R', 'nTargets', 'TP', 'FP', 'FN', 'time'))
for epoch in range(epochs):
epoch += start_epoch
# Update scheduler (automatic)
# scheduler.step()
# Update scheduler (manual) at 0, 54, 61 epochs to 1e-3, 1e-4, 1e-5
if epoch > 50:
lr = lr0 / 10
else:
lr = lr0
for g in optimizer.param_groups:
g['lr'] = lr
# Freeze darknet53.conv.74 layers for first epoch
if freeze_backbone is not False:
if epoch == 0:
for i, (name, p) in enumerate(model.named_parameters()):
if int(name.split('.')[1]) < 75: # if layer < 75
p.requires_grad = False
elif epoch == 1:
for i, (name, p) in enumerate(model.named_parameters()):
if int(name.split('.')[1]) < 75: # if layer < 75
p.requires_grad = True
ui = -1
rloss = defaultdict(float) # running loss
metrics = torch.zeros(3, num_classes)
optimizer.zero_grad()
for i, (imgs, targets) in enumerate(dataloader):
if sum([len(x) for x in targets]) < 1: # if no targets continue
continue
# SGD burn-in
if (epoch == 0) & (i <= 1000):
lr = lr0 * (i / 1000) ** 4
for g in optimizer.param_groups:
g['lr'] = lr
# Compute loss, compute gradient, update parameters
loss = model(imgs.to(device), targets, batch_report=report, var=var)
loss.backward()
# accumulated_batches = 1 # accumulate gradient for 4 batches before stepping optimizer
# if ((i+1) % accumulated_batches == 0) or (i == len(dataloader) - 1):
optimizer.step()
optimizer.zero_grad()
# Running epoch-means of tracked metrics
ui += 1
for key, val in model.losses.items():
rloss[key] = (rloss[key] * ui + val) / (ui + 1)
if report:
TP, FP, FN = metrics
metrics += model.losses['metrics']
# Precision
precision = TP / (TP + FP)
k = (TP + FP) > 0
if k.sum() > 0:
mean_precision = precision[k].mean()
# Recall
recall = TP / (TP + FN)
k = (TP + FN) > 0
if k.sum() > 0:
mean_recall = recall[k].mean()
s = ('%11s%11s' + '%11.3g' * 14) % (
'%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, len(dataloader) - 1), rloss['x'],
rloss['y'], rloss['w'], rloss['h'], rloss['conf'], rloss['cls'],
rloss['loss'], mean_precision, mean_recall, model.losses['nT'], model.losses['TP'],
model.losses['FP'], model.losses['FN'], time.time() - t1)
t1 = time.time()
print(s)
# Update best loss
loss_per_target = rloss['loss'] / rloss['nT']
if loss_per_target < best_loss:
best_loss = loss_per_target
# Save latest checkpoint
checkpoint = {'epoch': epoch,
'best_loss': best_loss,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, latest_weights_file)
# Save best checkpoint
if best_loss == loss_per_target:
os.system('cp {} {}'.format(
latest_weights_file,
best_weights_file,
))
# Save backup weights every 5 epochs
if (epoch > 0) & (epoch % 5 == 0):
backup_file_name = 'backup{}.pt'.format(epoch)
backup_file_path = os.path.join(weights_path, backup_file_name)
os.system('cp {} {}'.format(
latest_weights_file,
backup_file_path,
))
# Calculate mAP
mAP, R, P = test.test(
net_config_path,
data_config_path,
latest_weights_file,
batch_size=batch_size,
img_size=img_size,
)
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '%11.3g' * 3 % (mAP, P, R) + '\n')
# Save final model
dt = time.time() - t0
print('Finished %g epochs in %.2fs (%.2fs/epoch)' % (epoch, dt, dt / (epoch + 1)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--data-config', type=str, default='cfg/coco.data', help='path to data config file')
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--multi-scale', default=False, help='random image sizes per batch 320 - 608')
parser.add_argument('--img-size', type=int, default=32 * 13, help='pixels')
parser.add_argument('--weights-path', type=str, default='weights', help='path to store weights')
parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--report', action='store_true', help='report TP, FP, FN, P and R per batch (slower)')
parser.add_argument('--freeze-darknet53', default=False, help='freeze darknet53.conv.74 layers for first epoch')
parser.add_argument('--var', type=float, default=0, help='optional test variable')
opt = parser.parse_args()
print(opt, end='\n\n')
init_seeds()
torch.cuda.empty_cache()
train(
opt.cfg,
opt.data_config,
img_size=opt.img_size,
resume=opt.resume,
epochs=opt.epochs,
batch_size=opt.batch_size,
weights_path=opt.weights_path,
report=opt.report,
multi_scale=opt.multi_scale,
freeze_backbone=opt.freeze_darknet53,
var=opt.var,
)