label *.npy saving for faster caching
This commit is contained in:
parent
cd5f6227d9
commit
3ddaf3b63c
|
@ -317,18 +317,28 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
|
|
||||||
# Cache labels
|
# Cache labels
|
||||||
self.imgs = [None] * n
|
self.imgs = [None] * n
|
||||||
self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
|
create_datasubset, extract_bounding_boxes = False, False
|
||||||
extract_bounding_boxes = False
|
|
||||||
create_datasubset = False
|
|
||||||
pbar = tqdm(self.label_files, desc='Caching labels')
|
|
||||||
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
|
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
|
||||||
|
np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file
|
||||||
|
if os.path.isfile(np_labels_path):
|
||||||
|
print('Loading labels from %s' % np_labels_path)
|
||||||
|
self.labels = list(np.load(np_labels_path, allow_pickle=True))
|
||||||
|
labels_loaded = True
|
||||||
|
else:
|
||||||
|
self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
|
||||||
|
labels_loaded = False
|
||||||
|
|
||||||
|
pbar = tqdm(self.label_files, desc='Caching labels')
|
||||||
for i, file in enumerate(pbar):
|
for i, file in enumerate(pbar):
|
||||||
try:
|
if labels_loaded:
|
||||||
with open(file, 'r') as f:
|
l = self.labels[i]
|
||||||
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
else:
|
||||||
except:
|
try:
|
||||||
nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
|
with open(file, 'r') as f:
|
||||||
continue
|
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
||||||
|
except:
|
||||||
|
nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing
|
||||||
|
continue
|
||||||
|
|
||||||
if l.shape[0]:
|
if l.shape[0]:
|
||||||
assert l.shape[1] == 5, '> 5 label columns: %s' % file
|
assert l.shape[1] == 5, '> 5 label columns: %s' % file
|
||||||
|
@ -378,6 +388,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
||||||
pbar.desc = 'Caching labels (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
|
pbar.desc = 'Caching labels (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
|
||||||
nf, nm, ne, nd, n)
|
nf, nm, ne, nd, n)
|
||||||
assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
|
assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
|
||||||
|
if not labels_loaded:
|
||||||
|
print('Saving labels to %s for faster future loading' % np_labels_path)
|
||||||
|
np.save(np_labels_path, self.labels) # save for next time
|
||||||
|
|
||||||
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
||||||
if cache_images: # if training
|
if cache_images: # if training
|
||||||
|
|
Loading…
Reference in New Issue