From 3ddaf3b63c99ac69a0dec7f658b2f10c2419ac5e Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Wed, 20 May 2020 21:13:41 -0700 Subject: [PATCH] label *.npy saving for faster caching --- utils/datasets.py | 33 +++++++++++++++++++++++---------- 1 file changed, 23 insertions(+), 10 deletions(-) diff --git a/utils/datasets.py b/utils/datasets.py index 2b5a0bf3..e2b03c9a 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -317,18 +317,28 @@ class LoadImagesAndLabels(Dataset): # for training/testing # Cache labels self.imgs = [None] * n - self.labels = [np.zeros((0, 5), dtype=np.float32)] * n - extract_bounding_boxes = False - create_datasubset = False - pbar = tqdm(self.label_files, desc='Caching labels') + create_datasubset, extract_bounding_boxes = False, False nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate + np_labels_path = str(Path(self.label_files[0]).parent) + '.npy' # saved labels in *.npy file + if os.path.isfile(np_labels_path): + print('Loading labels from %s' % np_labels_path) + self.labels = list(np.load(np_labels_path, allow_pickle=True)) + labels_loaded = True + else: + self.labels = [np.zeros((0, 5), dtype=np.float32)] * n + labels_loaded = False + + pbar = tqdm(self.label_files, desc='Caching labels') for i, file in enumerate(pbar): - try: - with open(file, 'r') as f: - l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) - except: - nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing - continue + if labels_loaded: + l = self.labels[i] + else: + try: + with open(file, 'r') as f: + l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) + except: + nm += 1 # print('missing labels for image %s' % self.img_files[i]) # file missing + continue if l.shape[0]: assert l.shape[1] == 5, '> 5 label columns: %s' % file @@ -378,6 +388,9 @@ class LoadImagesAndLabels(Dataset): # for training/testing pbar.desc = 'Caching labels (%g found, %g missing, %g empty, %g duplicate, for %g images)' % ( nf, nm, ne, nd, n) assert nf > 0, 'No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url) + if not labels_loaded: + print('Saving labels to %s for faster future loading' % np_labels_path) + np.save(np_labels_path, self.labels) # save for next time # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) if cache_images: # if training