Update README.md
This commit is contained in:
parent
bce3dd03e8
commit
24f86b008a
53
README.md
53
README.md
|
@ -149,36 +149,36 @@ YOLOv3-608 | 57.9 (58.2) | 57.9
|
|||
`YOLOv3-spp 608` | 60.7 | 60.6
|
||||
|
||||
``` bash
|
||||
sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3
|
||||
git clone https://github.com/ultralytics/yolov3
|
||||
# bash yolov3/data/get_coco_dataset.sh
|
||||
sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
|
||||
git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
|
||||
cd yolov3
|
||||
|
||||
python3 test.py --save-json --conf-thres 0.001 --img-size 608 --batch-size 16
|
||||
Namespace(batch_size=16, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3.weights')
|
||||
Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)
|
||||
Image Total P R mAP
|
||||
Calculating mAP: 100%|█████████████████████████████████| 313/313 [08:54<00:00, 1.55s/it]
|
||||
5000 5000 0.0966 0.786 0.579
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.331
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.582
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.344
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.198
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.362
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.427
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.281
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.437
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.463
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309
|
||||
python3 test.py --save-json --img-size 416
|
||||
Namespace(batch_size=32, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
|
||||
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
|
||||
Class Images Targets P R mAP F1
|
||||
Calculating mAP: 100%|█████████████████████████████████████████| 157/157 [05:59<00:00, 1.71s/it]
|
||||
all 5e+03 3.58e+04 0.109 0.773 0.57 0.186
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.335
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.565
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.349
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.151
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.360
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.493
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.280
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.432
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.458
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.255
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577
|
||||
|
||||
python3 test.py --weights weights/yolov3-spp.weights --cfg cfg/yolov3-spp.cfg --save-json --img-size 608 --batch-size 8
|
||||
Namespace(batch_size=8, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
|
||||
Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)
|
||||
Image Total P R mAP
|
||||
Calculating mAP: 100%|█████████████████████████████████| 625/625 [07:01<00:00, 1.56it/s]
|
||||
5000 5000 0.12 0.81 0.611
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.620
|
||||
|
||||
python3 test.py --save-json --img-size 608 --batch-size 16
|
||||
Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
|
||||
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
|
||||
Class Images Targets P R mAP F1
|
||||
Computing mAP: 100%|█████████████████████████████████████████| 313/313 [06:11<00:00, 1.01it/s]
|
||||
all 5e+03 3.58e+04 0.12 0.81 0.611 0.203
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.366
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.607
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.386
|
||||
|
@ -191,6 +191,7 @@ Calculating mAP: 100%|███████████████████
|
|||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.331
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618
|
||||
|
||||
```
|
||||
|
||||
# Citation
|
||||
|
|
Loading…
Reference in New Issue