diff --git a/README.md b/README.md index 6e9f5913..6042076a 100755 --- a/README.md +++ b/README.md @@ -149,36 +149,36 @@ YOLOv3-608 | 57.9 (58.2) | 57.9 `YOLOv3-spp 608` | 60.7 | 60.6 ``` bash -sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3 +git clone https://github.com/ultralytics/yolov3 # bash yolov3/data/get_coco_dataset.sh -sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3 +git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3 cd yolov3 -python3 test.py --save-json --conf-thres 0.001 --img-size 608 --batch-size 16 -Namespace(batch_size=16, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3.weights') -Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80) - Image Total P R mAP -Calculating mAP: 100%|█████████████████████████████████| 313/313 [08:54<00:00, 1.55s/it] - 5000 5000 0.0966 0.786 0.579 - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.331 - Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.582 - Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.344 - Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.198 - Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.362 - Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.427 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.281 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.437 - Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.463 - Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309 +python3 test.py --save-json --img-size 416 +Namespace(batch_size=32, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights') +Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB) + Class Images Targets P R mAP F1 +Calculating mAP: 100%|█████████████████████████████████████████| 157/157 [05:59<00:00, 1.71s/it] + all 5e+03 3.58e+04 0.109 0.773 0.57 0.186 + Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.335 + Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.565 + Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.349 + Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.151 + Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.360 + Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.493 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.280 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.432 + Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.458 + Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.255 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494 - Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577 - -python3 test.py --weights weights/yolov3-spp.weights --cfg cfg/yolov3-spp.cfg --save-json --img-size 608 --batch-size 8 -Namespace(batch_size=8, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights') -Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80) - Image Total P R mAP -Calculating mAP: 100%|█████████████████████████████████| 625/625 [07:01<00:00, 1.56it/s] - 5000 5000 0.12 0.81 0.611 + Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.620 + +python3 test.py --save-json --img-size 608 --batch-size 16 +Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights') +Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB) + Class Images Targets P R mAP F1 +Computing mAP: 100%|█████████████████████████████████████████| 313/313 [06:11<00:00, 1.01it/s] + all 5e+03 3.58e+04 0.12 0.81 0.611 0.203 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.366 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.607 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.386 @@ -191,6 +191,7 @@ Calculating mAP: 100%|███████████████████ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.331 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618 + ``` # Citation