diff --git a/utils/utils.py b/utils/utils.py index 323dc3c1..047c481b 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -274,6 +274,7 @@ def compute_loss(p, targets, model): # predictions, targets, model ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor lxy, lwh, lcls, lconf, lgiou = ft([0]), ft([0]), ft([0]), ft([0]), ft([0]) txy, twh, tcls, tbox, indices, anchor_vec = build_targets(model, targets) + h = model.hyp # hyperparameters # Define criteria MSE = nn.MSELoss() @@ -281,7 +282,6 @@ def compute_loss(p, targets, model): # predictions, targets, model BCE = nn.BCEWithLogitsLoss() # Compute losses - h = model.hyp # hyperparameters bs = p[0].shape[0] # batch size k = bs # loss gain for i, pi0 in enumerate(p): # layer i predictions, i @@ -303,8 +303,6 @@ def compute_loss(p, targets, model): # predictions, targets, model lwh += (k * h['wh']) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss lcls += (k * h['cls']) * CE(pi[..., 5:], tcls[i]) # class_conf loss - # pos_weight = ft([gp[i] / min(gp) * 4.]) - # BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight) lconf += (k * h['conf']) * BCE(pi0[..., 4], tconf) # obj_conf loss loss = lxy + lwh + lconf + lcls