car-detection-bayes/test.py

188 lines
7.3 KiB
Python
Raw Normal View History

2018-08-26 08:51:39 +00:00
import argparse
2019-02-26 01:53:11 +00:00
import json
2019-02-27 11:32:25 +00:00
import time
2019-02-26 01:53:11 +00:00
from pathlib import Path
2018-10-10 15:07:21 +00:00
2018-08-26 08:51:39 +00:00
from models import *
from utils.datasets import *
from utils.utils import *
2019-02-10 20:07:26 +00:00
def test(
cfg,
data_cfg,
weights,
batch_size=16,
img_size=416,
iou_thres=0.5,
conf_thres=0.3,
2019-02-26 01:53:11 +00:00
nms_thres=0.45,
save_json=False,
model=None
2019-02-10 20:07:26 +00:00
):
device = torch_utils.select_device()
2018-11-14 15:14:41 +00:00
# Configure run
2019-02-11 21:44:25 +00:00
data_cfg_dict = parse_data_cfg(data_cfg)
nC = int(data_cfg_dict['classes']) # number of classes (80 for COCO)
test_path = data_cfg_dict['valid']
2018-11-14 15:14:41 +00:00
if model is None:
# Initialize model
model = Darknet(cfg, img_size)
2018-11-14 15:14:41 +00:00
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
else: # darknet format
load_darknet_weights(model, weights)
2018-11-14 15:14:41 +00:00
model.to(device).eval()
# Get dataloader
2019-02-26 13:57:28 +00:00
# dataloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path), batch_size=batch_size)
2019-02-11 11:44:12 +00:00
dataloader = LoadImagesAndLabels(test_path, batch_size=batch_size, img_size=img_size)
2018-11-14 15:14:41 +00:00
2019-02-23 22:50:23 +00:00
mean_mAP, mean_R, mean_P, seen = 0.0, 0.0, 0.0, 0
2018-11-22 12:52:22 +00:00
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP'))
mP, mR, mAPs, TP, jdict = [], [], [], [], []
2018-11-14 15:14:41 +00:00
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
2019-02-26 13:57:28 +00:00
coco91class = coco80_to_coco91_class()
for (imgs, targets, paths, shapes) in dataloader:
2019-03-17 22:19:52 +00:00
targets = targets.to(device)
2019-02-27 11:32:25 +00:00
t = time.time()
2019-02-10 20:10:50 +00:00
output = model(imgs.to(device))
output = non_max_suppression(output, conf_thres=conf_thres, nms_thres=nms_thres)
2018-11-14 15:14:41 +00:00
# Compute average precision for each sample
for si, detections in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
2019-02-23 22:50:23 +00:00
seen += 1
2018-11-14 15:14:41 +00:00
if detections is None:
2019-02-23 22:50:23 +00:00
# If there are labels but no detections mark as zero AP
if len(labels) != 0:
mP.append(0), mR.append(0), mAPs.append(0)
2018-11-14 15:14:41 +00:00
continue
# Get detections sorted by decreasing confidence scores
detections = detections[(-detections[:, 4]).argsort()]
2018-11-14 15:14:41 +00:00
2019-02-26 01:53:11 +00:00
if save_json:
2019-02-26 13:57:28 +00:00
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
box = detections[:, :4].clone() # xyxy
2019-02-26 13:57:28 +00:00
scale_coords(img_size, box, shapes[si]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
2019-02-26 01:53:11 +00:00
2019-02-26 13:57:28 +00:00
# add to json dictionary
2019-02-26 01:53:11 +00:00
for di, d in enumerate(detections):
2019-02-26 13:57:28 +00:00
jdict.append({
2019-02-26 01:53:11 +00:00
'image_id': int(Path(paths[si]).stem.split('_')[-1]),
2019-02-26 14:00:27 +00:00
'category_id': coco91class[int(d[6])],
2019-02-26 12:52:03 +00:00
'bbox': [float3(x) for x in box[di]],
2019-02-26 01:53:11 +00:00
'score': float3(d[4] * d[5])
})
2018-11-23 17:09:47 +00:00
# If no labels add number of detections as incorrect
2019-02-23 22:50:23 +00:00
correct = []
if len(labels) == 0:
2018-11-14 15:14:41 +00:00
# correct.extend([0 for _ in range(len(detections))])
mP.append(0), mR.append(0), mAPs.append(0)
2018-11-14 15:14:41 +00:00
continue
else:
# Extract target boxes as (x1, y1, x2, y2)
target_box = xywh2xyxy(labels[:, 1:5]) * img_size
target_cls = labels[:, 0]
2018-11-14 15:14:41 +00:00
detected = []
for *pred_box, conf, cls_conf, cls_pred in detections:
# Best iou, index between pred and targets
iou, bi = bbox_iou(pred_box, target_box).max(0)
# If iou > threshold and class is correct mark as correct
if iou > iou_thres and cls_pred == target_cls[bi] and bi not in detected:
2018-11-14 15:14:41 +00:00
correct.append(1)
detected.append(bi)
2018-11-14 15:14:41 +00:00
else:
correct.append(0)
# Compute Average Precision (AP) per class
2019-02-23 22:50:23 +00:00
AP, AP_class, R, P = ap_per_class(tp=correct,
conf=detections[:, 4],
pred_cls=detections[:, 6],
2018-11-22 12:52:22 +00:00
target_cls=target_cls)
2018-11-14 15:14:41 +00:00
# Accumulate AP per class
AP_accum_count += np.bincount(AP_class, minlength=nC)
AP_accum += np.bincount(AP_class, minlength=nC, weights=AP)
2018-11-22 12:52:22 +00:00
# Compute mean AP across all classes in this image, and append to image list
mP.append(P.mean())
mR.append(R.mean())
mAPs.append(AP.mean())
2018-11-14 15:14:41 +00:00
2018-11-22 12:52:22 +00:00
# Means of all images
mean_P = np.mean(mP)
mean_R = np.mean(mR)
mean_mAP = np.mean(mAPs)
2018-11-14 15:14:41 +00:00
2019-02-18 13:03:39 +00:00
# Print image mAP and running mean mAP
2019-02-27 11:32:25 +00:00
print(('%11s%11s' + '%11.3g' * 4 + 's') %
(seen, dataloader.nF, mean_P, mean_R, mean_mAP, time.time() - t))
2018-11-14 15:14:41 +00:00
# Print mAP per class
print('\nmAP Per Class:')
2019-02-27 11:32:25 +00:00
for i, c in enumerate(load_classes(data_cfg_dict['names'])):
if AP_accum_count[i]:
print('%15s: %-.4f' % (c, AP_accum[i] / (AP_accum_count[i])))
2018-11-14 15:14:41 +00:00
2019-02-26 01:53:11 +00:00
# Save JSON
if save_json:
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.img_files]
with open('results.json', 'w') as file:
json.dump(jdict, file)
2019-02-26 01:55:32 +00:00
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
2019-02-26 01:53:11 +00:00
2019-02-26 14:11:22 +00:00
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO('../coco/annotations/instances_val2014.json') # initialize COCO ground truth api
cocoDt = cocoGt.loadRes('results.json') # initialize COCO detections api
2019-02-26 01:53:11 +00:00
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
2019-02-26 14:15:39 +00:00
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
2019-02-26 01:53:11 +00:00
2018-11-22 15:42:58 +00:00
# Return mAP
return mean_P, mean_R, mean_mAP
2018-11-14 15:14:41 +00:00
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
2019-02-11 21:44:25 +00:00
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
2019-02-18 19:42:59 +00:00
parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='path to weights file')
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
2019-02-26 12:52:03 +00:00
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension')
opt = parser.parse_args()
print(opt, end='\n\n')
2019-02-10 20:10:50 +00:00
with torch.no_grad():
mAP = test(
opt.cfg,
opt.data_cfg,
opt.weights,
opt.batch_size,
opt.img_size,
opt.iou_thres,
opt.conf_thres,
2019-02-26 02:12:04 +00:00
opt.nms_thres,
opt.save_json)