updates
This commit is contained in:
		
							parent
							
								
									03685866fd
								
							
						
					
					
						commit
						6deda82384
					
				
							
								
								
									
										6
									
								
								test.py
								
								
								
								
							
							
						
						
									
										6
									
								
								test.py
								
								
								
								
							|  | @ -103,15 +103,15 @@ def test( | |||
|             mean_R = np.mean(mR) | ||||
|             mean_P = np.mean(mP) | ||||
| 
 | ||||
|             # Print image mAP and running mean mAP | ||||
|             print(('%11s%11s' + '%11.3g' * 3) % (len(mAPs), dataloader.nF, mean_P, mean_R, mean_mAP)) | ||||
|         # Print image mAP and running mean mAP | ||||
|         print(('%11s%11s' + '%11.3g' * 3) % (len(mAPs), dataloader.nF, mean_P, mean_R, mean_mAP)) | ||||
| 
 | ||||
|     # Print mAP per class | ||||
|     print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:') | ||||
| 
 | ||||
|     classes = load_classes(data_cfg_dict['names'])  # Extracts class labels from file | ||||
|     for i, c in enumerate(classes): | ||||
|         print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i])) | ||||
|         print('%15s: %-.4f' % (c, AP_accum[i] / (AP_accum_count[i] + 1E-16))) | ||||
| 
 | ||||
|     # Return mAP | ||||
|     return mean_mAP, mean_R, mean_P | ||||
|  |  | |||
|  | @ -91,13 +91,13 @@ class LoadWebcam:  # for inference | |||
| 
 | ||||
| class LoadImagesAndLabels:  # for training | ||||
|     def __init__(self, path, batch_size=1, img_size=608, multi_scale=False, augment=False): | ||||
|         self.path = path | ||||
|         with open(path, 'r') as file: | ||||
|             self.img_files = file.readlines() | ||||
|             self.img_files = [x.replace('\n', '') for x in self.img_files] | ||||
|             self.img_files = list(filter(lambda x: len(x) > 0, self.img_files)) | ||||
| 
 | ||||
|         self.img_files = [path.replace('\n', '') for path in self.img_files] | ||||
|         self.label_files = [path.replace('images', 'labels').replace('.png', '.txt').replace('.jpg', '.txt') | ||||
|                             for path in self.img_files] | ||||
|         self.label_files = [x.replace('images', 'labels').replace('.png', '.txt').replace('.jpg', '.txt') | ||||
|                             for x in self.img_files] | ||||
| 
 | ||||
|         self.nF = len(self.img_files)  # number of image files | ||||
|         self.nB = math.ceil(self.nF / batch_size)  # number of batches | ||||
|  |  | |||
|  | @ -438,13 +438,14 @@ def plot_results(): | |||
|     # Plot YOLO training results file 'results.txt' | ||||
|     import glob | ||||
|     import matplotlib.pyplot as plt | ||||
|     import numpy as np | ||||
|     # import os; os.system('rm -rf results.txt && wget https://storage.googleapis.com/ultralytics/results_v1_0.txt') | ||||
| 
 | ||||
|     plt.figure(figsize=(16, 8)) | ||||
|     s = ['X', 'Y', 'Width', 'Height', 'Objectness', 'Classification', 'Total Loss', 'Precision', 'Recall', 'mAP'] | ||||
|     files = sorted(glob.glob('results*.txt')) | ||||
|     s = ['X', 'Y', 'Width', 'Height', 'Confidence', 'Classification', 'Total Loss', 'mAP', 'Recall', 'Precision'] | ||||
|     files = sorted(glob.glob('results.txt')) | ||||
|     for f in files: | ||||
|         results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 7, 8, 17, 18, 16]).T  # column 16 is mAP | ||||
|         results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 7, 8, 11, 12, 13]).T  # column 13 is mAP | ||||
|         n = results.shape[1] | ||||
|         for i in range(10): | ||||
|             plt.subplot(2, 5, i + 1) | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue