2018-08-26 08:51:39 +00:00
|
|
|
|
import argparse
|
|
|
|
|
|
2019-09-02 14:04:54 +00:00
|
|
|
|
from models import * # set ONNX_EXPORT in models.py
|
2018-08-26 08:51:39 +00:00
|
|
|
|
from utils.datasets import *
|
|
|
|
|
from utils.utils import *
|
|
|
|
|
|
2019-01-08 18:37:23 +00:00
|
|
|
|
|
2020-01-02 17:50:11 +00:00
|
|
|
|
def detect(save_img=False):
|
2020-05-17 22:19:33 +00:00
|
|
|
|
imgsz = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
|
2020-01-02 17:50:11 +00:00
|
|
|
|
out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
|
2019-09-19 16:43:29 +00:00
|
|
|
|
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
2019-08-31 16:58:30 +00:00
|
|
|
|
|
2019-07-15 15:00:04 +00:00
|
|
|
|
# Initialize
|
2019-09-13 14:00:52 +00:00
|
|
|
|
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
|
2019-08-31 16:58:30 +00:00
|
|
|
|
if os.path.exists(out):
|
|
|
|
|
shutil.rmtree(out) # delete output folder
|
|
|
|
|
os.makedirs(out) # make new output folder
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
2019-02-11 11:32:54 +00:00
|
|
|
|
# Initialize model
|
2020-05-17 22:19:33 +00:00
|
|
|
|
model = Darknet(opt.cfg, imgsz)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
2019-02-11 11:32:54 +00:00
|
|
|
|
# Load weights
|
2019-09-19 16:09:16 +00:00
|
|
|
|
attempt_download(weights)
|
2019-09-02 14:22:13 +00:00
|
|
|
|
if weights.endswith('.pt'): # pytorch format
|
|
|
|
|
model.load_state_dict(torch.load(weights, map_location=device)['model'])
|
2018-12-06 12:01:49 +00:00
|
|
|
|
else: # darknet format
|
2020-01-17 18:55:30 +00:00
|
|
|
|
load_darknet_weights(model, weights)
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
2019-10-10 20:54:20 +00:00
|
|
|
|
# Second-stage classifier
|
|
|
|
|
classify = False
|
|
|
|
|
if classify:
|
|
|
|
|
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
|
2019-10-12 11:59:07 +00:00
|
|
|
|
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
|
2019-10-11 23:18:41 +00:00
|
|
|
|
modelc.to(device).eval()
|
2019-10-10 20:54:20 +00:00
|
|
|
|
|
2019-04-22 14:21:21 +00:00
|
|
|
|
# Eval mode
|
2018-08-26 08:51:39 +00:00
|
|
|
|
model.to(device).eval()
|
|
|
|
|
|
2020-04-05 21:05:12 +00:00
|
|
|
|
# Fuse Conv2d + BatchNorm2d layers
|
|
|
|
|
# model.fuse()
|
|
|
|
|
|
2019-07-30 10:39:17 +00:00
|
|
|
|
# Export mode
|
2019-04-22 14:21:21 +00:00
|
|
|
|
if ONNX_EXPORT:
|
2020-01-30 20:12:04 +00:00
|
|
|
|
model.fuse()
|
2020-05-17 22:19:33 +00:00
|
|
|
|
img = torch.zeros((1, 3) + imgsz) # (1, 3, 320, 192)
|
2020-02-26 06:58:26 +00:00
|
|
|
|
f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename
|
2020-04-22 23:00:20 +00:00
|
|
|
|
torch.onnx.export(model, img, f, verbose=False, opset_version=11,
|
|
|
|
|
input_names=['images'], output_names=['classes', 'boxes'])
|
2019-11-08 01:55:00 +00:00
|
|
|
|
|
|
|
|
|
# Validate exported model
|
|
|
|
|
import onnx
|
2020-02-26 06:58:26 +00:00
|
|
|
|
model = onnx.load(f) # Load the ONNX model
|
2019-11-08 01:55:00 +00:00
|
|
|
|
onnx.checker.check_model(model) # Check that the IR is well formed
|
|
|
|
|
print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
|
2019-04-22 14:21:21 +00:00
|
|
|
|
return
|
|
|
|
|
|
2019-07-31 22:08:28 +00:00
|
|
|
|
# Half precision
|
2019-09-02 14:22:13 +00:00
|
|
|
|
half = half and device.type != 'cpu' # half precision only supported on CUDA
|
|
|
|
|
if half:
|
2019-07-31 22:08:28 +00:00
|
|
|
|
model.half()
|
|
|
|
|
|
2018-08-26 08:51:39 +00:00
|
|
|
|
# Set Dataloader
|
2019-04-02 11:43:18 +00:00
|
|
|
|
vid_path, vid_writer = None, None
|
2019-09-19 16:43:29 +00:00
|
|
|
|
if webcam:
|
2019-09-20 13:24:00 +00:00
|
|
|
|
view_img = True
|
2019-09-10 12:25:56 +00:00
|
|
|
|
torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
|
2020-05-17 22:19:33 +00:00
|
|
|
|
dataset = LoadStreams(source, img_size=imgsz)
|
2019-02-11 12:45:04 +00:00
|
|
|
|
else:
|
2019-09-02 14:41:41 +00:00
|
|
|
|
save_img = True
|
2020-05-17 22:19:33 +00:00
|
|
|
|
dataset = LoadImages(source, img_size=imgsz)
|
2019-02-08 21:43:05 +00:00
|
|
|
|
|
2019-12-15 20:47:53 +00:00
|
|
|
|
# Get names and colors
|
|
|
|
|
names = load_classes(opt.names)
|
|
|
|
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
2019-07-31 22:08:28 +00:00
|
|
|
|
# Run inference
|
2019-08-01 00:21:40 +00:00
|
|
|
|
t0 = time.time()
|
2020-05-17 22:19:33 +00:00
|
|
|
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
2020-04-22 17:46:26 +00:00
|
|
|
|
_ = model(img.half() if half else img.float()) if device.type != 'cpu' else None # run once
|
2019-09-09 23:34:23 +00:00
|
|
|
|
for path, img, im0s, vid_cap in dataset:
|
|
|
|
|
img = torch.from_numpy(img).to(device)
|
2020-02-23 02:18:38 +00:00
|
|
|
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
|
|
|
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
2019-09-09 23:34:23 +00:00
|
|
|
|
if img.ndimension() == 3:
|
|
|
|
|
img = img.unsqueeze(0)
|
|
|
|
|
|
2020-02-23 02:18:38 +00:00
|
|
|
|
# Inference
|
2020-03-10 01:39:00 +00:00
|
|
|
|
t1 = torch_utils.time_synchronized()
|
2020-04-06 00:14:26 +00:00
|
|
|
|
pred = model(img, augment=opt.augment)[0]
|
2020-03-10 01:39:00 +00:00
|
|
|
|
t2 = torch_utils.time_synchronized()
|
2019-09-27 21:46:45 +00:00
|
|
|
|
|
2020-04-06 00:14:26 +00:00
|
|
|
|
# to float
|
|
|
|
|
if half:
|
|
|
|
|
pred = pred.float()
|
|
|
|
|
|
2019-10-10 20:54:20 +00:00
|
|
|
|
# Apply NMS
|
2020-04-05 18:05:49 +00:00
|
|
|
|
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
|
|
|
|
|
multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms)
|
2019-10-10 20:54:20 +00:00
|
|
|
|
|
2019-12-23 19:25:15 +00:00
|
|
|
|
# Apply Classifier
|
2019-10-10 20:54:20 +00:00
|
|
|
|
if classify:
|
|
|
|
|
pred = apply_classifier(pred, modelc, img, im0s)
|
|
|
|
|
|
|
|
|
|
# Process detections
|
2020-05-16 18:09:57 +00:00
|
|
|
|
for i, det in enumerate(pred): # detections for image i
|
2019-09-19 16:43:29 +00:00
|
|
|
|
if webcam: # batch_size >= 1
|
2020-06-03 06:59:03 +00:00
|
|
|
|
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
|
2019-04-28 21:16:21 +00:00
|
|
|
|
else:
|
2019-09-09 23:34:23 +00:00
|
|
|
|
p, s, im0 = path, '', im0s
|
|
|
|
|
|
|
|
|
|
save_path = str(Path(out) / Path(p).name)
|
|
|
|
|
s += '%gx%g ' % img.shape[2:] # print string
|
2020-05-18 02:28:06 +00:00
|
|
|
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
2019-09-09 23:34:23 +00:00
|
|
|
|
if det is not None and len(det):
|
2020-05-17 22:19:33 +00:00
|
|
|
|
# Rescale boxes from imgsz to im0 size
|
2019-09-09 23:34:23 +00:00
|
|
|
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
|
|
|
|
|
|
|
|
|
# Print results
|
|
|
|
|
for c in det[:, -1].unique():
|
|
|
|
|
n = (det[:, -1] == c).sum() # detections per class
|
2019-12-15 20:47:53 +00:00
|
|
|
|
s += '%g %ss, ' % (n, names[int(c)]) # add to string
|
2019-09-09 23:34:23 +00:00
|
|
|
|
|
|
|
|
|
# Write results
|
2019-12-20 02:09:13 +00:00
|
|
|
|
for *xyxy, conf, cls in det:
|
2019-09-09 23:34:23 +00:00
|
|
|
|
if save_txt: # Write to file
|
2020-05-16 18:09:57 +00:00
|
|
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
2020-05-16 18:51:49 +00:00
|
|
|
|
with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
|
2020-05-16 18:09:57 +00:00
|
|
|
|
file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
|
2019-09-09 23:34:23 +00:00
|
|
|
|
|
2019-09-19 13:31:28 +00:00
|
|
|
|
if save_img or view_img: # Add bbox to image
|
2019-12-15 20:47:53 +00:00
|
|
|
|
label = '%s %.2f' % (names[int(cls)], conf)
|
2019-09-09 23:34:23 +00:00
|
|
|
|
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
|
|
|
|
|
|
2020-01-01 20:44:33 +00:00
|
|
|
|
# Print time (inference + NMS)
|
2020-03-10 01:39:00 +00:00
|
|
|
|
print('%sDone. (%.3fs)' % (s, t2 - t1))
|
2020-01-01 20:44:33 +00:00
|
|
|
|
|
2019-09-09 23:34:23 +00:00
|
|
|
|
# Stream results
|
2019-09-19 13:31:28 +00:00
|
|
|
|
if view_img:
|
2019-09-09 23:34:23 +00:00
|
|
|
|
cv2.imshow(p, im0)
|
2019-12-12 21:56:56 +00:00
|
|
|
|
if cv2.waitKey(1) == ord('q'): # q to quit
|
|
|
|
|
raise StopIteration
|
2019-09-09 23:34:23 +00:00
|
|
|
|
|
|
|
|
|
# Save results (image with detections)
|
|
|
|
|
if save_img:
|
|
|
|
|
if dataset.mode == 'images':
|
|
|
|
|
cv2.imwrite(save_path, im0)
|
|
|
|
|
else:
|
|
|
|
|
if vid_path != save_path: # new video
|
|
|
|
|
vid_path = save_path
|
|
|
|
|
if isinstance(vid_writer, cv2.VideoWriter):
|
|
|
|
|
vid_writer.release() # release previous video writer
|
|
|
|
|
|
|
|
|
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
|
|
|
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
|
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
|
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
|
|
|
|
|
vid_writer.write(im0)
|
2019-04-02 11:43:18 +00:00
|
|
|
|
|
2019-09-02 14:09:05 +00:00
|
|
|
|
if save_txt or save_img:
|
2019-08-31 16:58:30 +00:00
|
|
|
|
print('Results saved to %s' % os.getcwd() + os.sep + out)
|
|
|
|
|
if platform == 'darwin': # MacOS
|
2020-04-20 23:47:28 +00:00
|
|
|
|
os.system('open ' + save_path)
|
2018-11-21 18:24:00 +00:00
|
|
|
|
|
2019-08-01 00:21:40 +00:00
|
|
|
|
print('Done. (%.3fs)' % (time.time() - t0))
|
|
|
|
|
|
2018-08-26 08:51:39 +00:00
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2018-12-05 13:31:08 +00:00
|
|
|
|
parser = argparse.ArgumentParser()
|
2019-12-15 20:47:53 +00:00
|
|
|
|
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path')
|
|
|
|
|
parser.add_argument('--names', type=str, default='data/coco.names', help='*.names path')
|
2020-02-17 07:12:07 +00:00
|
|
|
|
parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path')
|
2019-09-20 13:23:08 +00:00
|
|
|
|
parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam
|
2019-08-31 16:58:30 +00:00
|
|
|
|
parser.add_argument('--output', type=str, default='output', help='output folder') # output folder
|
2020-03-30 18:46:20 +00:00
|
|
|
|
parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)')
|
2019-08-05 11:57:18 +00:00
|
|
|
|
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
|
2020-02-17 07:30:14 +00:00
|
|
|
|
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
|
2019-08-31 16:58:30 +00:00
|
|
|
|
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
|
2019-07-31 22:08:28 +00:00
|
|
|
|
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
|
2019-09-13 14:00:52 +00:00
|
|
|
|
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
|
2019-09-19 16:54:16 +00:00
|
|
|
|
parser.add_argument('--view-img', action='store_true', help='display results')
|
2020-01-15 18:22:59 +00:00
|
|
|
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
2020-01-01 20:44:33 +00:00
|
|
|
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
|
2020-01-10 17:30:05 +00:00
|
|
|
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
2020-04-06 00:14:26 +00:00
|
|
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
2018-12-05 13:31:08 +00:00
|
|
|
|
opt = parser.parse_args()
|
2020-06-15 19:25:48 +00:00
|
|
|
|
opt.cfg = check_file(opt.cfg) # check file
|
|
|
|
|
opt.names = check_file(opt.names) # check file
|
2018-12-05 13:31:08 +00:00
|
|
|
|
print(opt)
|
|
|
|
|
|
2019-02-10 20:06:22 +00:00
|
|
|
|
with torch.no_grad():
|
2019-08-31 16:58:30 +00:00
|
|
|
|
detect()
|