car-detection-bayes/our_scripts/run_yolov3_process.py

101 lines
4.2 KiB
Python
Raw Normal View History

2020-06-28 12:37:21 +00:00
import argparse
import datetime
import glob
import io
import ntpath
import os
import shutil
import subprocess
from config import Configuration
def call_training_script(config):
cmd = '/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/train.py '
cmd += config.train.get_args_string()
print("_______ CALLING TRAINING SCRIPT _______")
print(cmd)
os.chdir('..')
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True)
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of training process to console
print(line)
return cmd
def move_training_results_to_experiments_dir(config):
training_results_dir_path = os.path.join(config.experiments.dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
print("_______ CALLING MOVING RESULTS _______")
print(f"MOVING RESUTLS TO {training_results_dir_path}")
os.mkdir(training_results_dir_path)
weights_path = os.path.join(training_results_dir_path, 'best.pt')
shutil.move('/home/tomekb/yolov3/weights/best.pt', weights_path) #move best weights
names_path = open(config.train.data).readlines()[3].split('=')[-1].rstrip() # read names path from file
names_file_name = ntpath.basename(names_path)
experiment_names_path = os.path.join(training_results_dir_path, names_file_name)
shutil.copy(names_path, experiment_names_path) # copy names to created experiment dir with training results
tensorboard_dir = './runs'
last_modified_tensorboard_dir = max(glob.glob(os.path.join(tensorboard_dir, '*/')), key=os.path.getmtime)
shutil.move(last_modified_tensorboard_dir, os.path.join(training_results_dir_path)) #saving related tensorboard dir
shutil.copy2(config.config_path, training_results_dir_path) #copying configuration yaml
#for test purposes only
shutil.copy2('/home/tomekb/yolov3/experiments/1/best.pt', training_results_dir_path)
return weights_path, experiment_names_path, training_results_dir_path
def call_detection_script(config, weights_path, names_path, dir):
detect_output_dir = os.path.join(dir, 'output')
cmd = f"""/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/detect.py
--cfg {config.train.cfg}
--source {config.detect.source}
--output {detect_output_dir}
--names {names_path}
--weights {weights_path}
--test-img-size {getattr(config.detect, 'test-img-size')}
--conf-thres {getattr(config.detect, 'conf-thres')}
--iou-thres {getattr(config.detect, 'iou-thres')}"""
cmd += " --save-txt" if getattr(config.detect, 'save-txt') else ""
cmd += " --agnostic-nms" if getattr(config.detect, 'agnostic-nms') else ""
cmd += " --agument" if getattr(config.detect, 'augment') else ""
cmd += f" --device {config.train.device}" if config.train.device else ""
cmd = " ".join(cmd.split())
print("_______ CALLING DETECTION SCRIPT _______")
print(cmd)
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True)
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console
print(line)
return detect_output_dir
def call_generate_confussion_matrix(detect_output_dir, config, names_path, train_results_dir):
labels_dir = getattr(config.confussion_matrix, 'labels-dir')
cmd = f"node ./our_scripts/generate-confusion-matrix.js {detect_output_dir} {labels_dir} {names_path} > {train_results_dir}/confussion-matrix.tsv"
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True)
print("_______ CALLING CONFUSSION MATRIX SCRIPT _______")
print(cmd)
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console
print(line)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
config = Configuration()
train_cmd = call_training_script(config)
weights_path, names_path,train_results_dir = move_training_results_to_experiments_dir(config)
detect_output_dir = call_detection_script(config, weights_path, names_path,train_results_dir)
call_generate_confussion_matrix(detect_output_dir, config, names_path,train_results_dir)