Update
This commit is contained in:
parent
2ed5ace62e
commit
6ec04a4cca
|
@ -1,7 +1,12 @@
|
|||
weights/
|
||||
runs/
|
||||
data/widok01-11_images
|
||||
data/widok01-11_labels
|
||||
data/widok01-11_labels.npy
|
||||
.idea/
|
||||
experiments/
|
||||
MY_INFO
|
||||
|
||||
*.pyc
|
||||
*.pyx
|
||||
*.jpg
|
|
@ -6,9 +6,10 @@ from utils.utils import *
|
|||
|
||||
|
||||
def detect(save_img=False):
|
||||
imgsz = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
|
||||
imgsz = (320, 192) if ONNX_EXPORT else opt.test_img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
|
||||
out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
|
||||
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
||||
#webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
|
||||
webcam = False
|
||||
|
||||
# Initialize
|
||||
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
|
||||
|
@ -171,7 +172,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path')
|
||||
parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam
|
||||
parser.add_argument('--output', type=str, default='output', help='output folder') # output folder
|
||||
parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)')
|
||||
parser.add_argument('--test-img-size', type=int, default=512, help='inference size (pixels)')
|
||||
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
|
||||
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
|
||||
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
|
||||
|
@ -188,4 +189,4 @@ if __name__ == '__main__':
|
|||
print(opt)
|
||||
|
||||
with torch.no_grad():
|
||||
detect()
|
||||
detect(True)
|
||||
|
|
|
@ -0,0 +1,67 @@
|
|||
from typing import Any
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
class Args:
|
||||
|
||||
def get_args_string(self) -> str:
|
||||
string = ''
|
||||
for key, value in self.__dict__.items():
|
||||
if not isinstance(value, Configuration.Train.OtherHyps) and value is not None:
|
||||
if key == 'img-size':
|
||||
string += f' --{key} {value.split(" ")[0]} {value.split(" ")[1]}'
|
||||
elif type(value) == bool:
|
||||
if value:
|
||||
string += f" --{key}"
|
||||
else:
|
||||
continue
|
||||
elif type(value) in [int, str] and value != '':
|
||||
string += f' --{key} {value}'
|
||||
else:
|
||||
raise Exception(f"Cannot parse argument {key} {value}")
|
||||
|
||||
return string
|
||||
|
||||
class Configuration:
|
||||
class Train(Args):
|
||||
|
||||
class OtherHyps:
|
||||
def __init__(self, config_file) -> None:
|
||||
for key, value in config_file['train']['other-hyps'].items():
|
||||
self.__dict__[key] = value
|
||||
|
||||
def __init__(self, config_file) -> None:
|
||||
self.other_hyps = Configuration.Train.OtherHyps(config_file)
|
||||
for key, value in config_file['train'].items():
|
||||
if key != 'other-hyps':
|
||||
self.__dict__[key] = value
|
||||
|
||||
class Experiments(Args):
|
||||
def __init__(self, config_file) -> None:
|
||||
for key, value in config_file['experiments'].items():
|
||||
self.__dict__[key] = value
|
||||
|
||||
class Detect(Args):
|
||||
def __init__(self, config_file) -> None:
|
||||
for key, value in config_file['detect'].items():
|
||||
self.__dict__[key] = value
|
||||
|
||||
class ConfussionMatrix(Args):
|
||||
def __init__(self, config_file) -> None:
|
||||
for key, value in config_file['confussion-matrix'].items():
|
||||
self.__dict__[key] = value
|
||||
|
||||
class Bayes(Args):
|
||||
def __init__(self, config_file) -> None:
|
||||
for key, value in config_file['bayes'].items():
|
||||
self.__dict__[key] = value
|
||||
|
||||
def __init__(self, config_path='/home/tomekb/yolov3/our_scripts/config.yml') -> None:
|
||||
self.config_path = config_path
|
||||
file = yaml.load(open(config_path, 'r'), Loader=yaml.Loader)
|
||||
self.train = self.Train(file)
|
||||
self.experiments = self.Experiments(file)
|
||||
self.detect = self.Detect(file)
|
||||
self.confussion_matrix = self.ConfussionMatrix(file)
|
||||
self.bayes = self.Bayes(file)
|
|
@ -0,0 +1,58 @@
|
|||
train:
|
||||
epochs: 2
|
||||
batch-size: 400
|
||||
cfg: ./cfg/yolov3-spp-18cls.cfg
|
||||
data: ./data/widok01-11.data
|
||||
multi-scale: false
|
||||
img-size: '64 128'
|
||||
rect: false
|
||||
resume: false
|
||||
nosave: false
|
||||
notest: false
|
||||
evolve: false
|
||||
bucket:
|
||||
cache-images: false
|
||||
weights: /home/tomekb/yolov3/weights/yolov3-spp-ultralytics.pt
|
||||
device: 1
|
||||
adam: true
|
||||
single-cls: false
|
||||
|
||||
# inne hiperparametry
|
||||
other-hyps:
|
||||
giou: 3.53 # giou loss gain
|
||||
cls: 37.4 # cls loss gain
|
||||
cls_pw: 1.0 # cls BCELoss positive_weight
|
||||
obj: 64.3 # obj loss gain (*=img_size/320 if img_size != 320)
|
||||
obj_pw: 1.0 # obj BCELoss positive_weight
|
||||
iou_t: 0.20 # iou training threshold
|
||||
lr0: 0.01 # initial learning rate (SGD=5E-3 Adam=5E-4)
|
||||
lrf: 0.0005 # final learning rate (with cos scheduler)
|
||||
momentum: 0.937 # SGD momentum
|
||||
weight_decay: 0.0005 # optimizer weight decay
|
||||
fl_gamma: 0.0 # focal loss gamma (efficientDet default is gamma=1.5)
|
||||
hsv_h: 0.0138 # image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.678 # image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.36 # image HSV-Value augmentation (fraction)
|
||||
degrees: 0 # 1.98 * 0 # image rotation (+/- deg)
|
||||
translate: 0 # 0.05 * 0 # image translation (+/- fraction)
|
||||
scale: 0 #0 .05 * 0 # image scale (+/- gain)
|
||||
shear: 0 # 0.641 * 0 # image shear (+/- deg)
|
||||
|
||||
experiments:
|
||||
dir: ./experiments
|
||||
detect:
|
||||
source: /home/michall/yolov3/data/widok01-11_test_labels.txt
|
||||
test-img-size: 1024
|
||||
conf-thres: 0.3
|
||||
iou-thres: 0.6
|
||||
save-txt: true
|
||||
classes:
|
||||
agnostic-nms:
|
||||
augment:
|
||||
confussion-matrix:
|
||||
labels-dir: ./data/widok01-11_labels
|
||||
bayes:
|
||||
todo: todo
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,178 @@
|
|||
const fs = require('fs')
|
||||
const path = require('path')
|
||||
|
||||
const detectionsDir = process.argv[2]
|
||||
const labelsDir = process.argv[3]
|
||||
const namesFile = process.argv[4]
|
||||
const maxDistance = process.argv[5] || 0.1
|
||||
const width = process.argv[6] || 1920
|
||||
const height = process.argv[7] || 1080
|
||||
|
||||
/*
|
||||
console.log("DETECTIONS DIRECTORY:", detectionsDir)
|
||||
console.log("LABELS DIRECTORY:", labelsDir)
|
||||
console.log("NAMES FILE:", namesFile)
|
||||
console.log("WIDTH", width)
|
||||
console.log("HEIGHT", height)
|
||||
//*/
|
||||
|
||||
function parseDetections(detectionData) {
|
||||
return detectionData
|
||||
.split('\n')
|
||||
.filter(x => !!x)
|
||||
.map(line => line.split(' ').map(x => +x))
|
||||
.map(a => ({
|
||||
x: (a[0] + a[2]) / ( 2 * width ),
|
||||
y: (a[1] + a[3]) / ( 2 * height ),
|
||||
w: (a[2] - a[0]) / width,
|
||||
h: (a[3] - a[1]) / height,
|
||||
c: a[4],
|
||||
p: a[5]
|
||||
}))
|
||||
}
|
||||
|
||||
function parseLabels(labelData) {
|
||||
return labelData
|
||||
.split('\n')
|
||||
.filter(x => !!x)
|
||||
.map(line => line.split(' ').map(x => +x))
|
||||
.map(a => ({
|
||||
x: a[1],
|
||||
y: a[2],
|
||||
w: a[3],
|
||||
h: a[4],
|
||||
c: a[0],
|
||||
p: 1
|
||||
}))
|
||||
}
|
||||
|
||||
function findNearest(position, boxes) {
|
||||
let dx = position.x - boxes[0].x
|
||||
let dy = position.y - boxes[0].y
|
||||
let bestBox = { ...boxes[0], d: Math.sqrt(dx * dx + dy * dy) }
|
||||
for(let i = 1; i < boxes.length; i++) {
|
||||
dx = position.x - boxes[i].x
|
||||
dy = position.y - boxes[i].y
|
||||
let distance = Math.sqrt(dx * dx + dy * dy)
|
||||
if(distance < bestBox.d) {
|
||||
bestBox = { ...boxes[i], d: distance }
|
||||
}
|
||||
}
|
||||
return bestBox
|
||||
}
|
||||
|
||||
function compare(labels, detections) {
|
||||
const results = {}
|
||||
for(const label of labels) {
|
||||
const detection = findNearest(label, detections)
|
||||
if(detection.d > maxDistance) {
|
||||
if(!results[label.c]) results[label.c] = {}
|
||||
results[label.c]['n'] = + (results[label.c]['n'] || 0) + 1
|
||||
} else {
|
||||
if(!results[label.c]) results[label.c] = {}
|
||||
results[label.c][detection.c] = (results[label.c][detection.c] || 0) + 1
|
||||
}
|
||||
}
|
||||
for(const detection of detections) {
|
||||
const label = findNearest(detection, labels)
|
||||
if(label.d > maxDistance) {
|
||||
results['n'] = results['n'] || {}
|
||||
results['n'][detection.c] = + (results['n'][detection.c] || 0) + 1
|
||||
}
|
||||
}
|
||||
return results
|
||||
}
|
||||
|
||||
async function compareLabelsAndResults(txt) {
|
||||
const detectionPath = path.resolve(detectionsDir, txt)
|
||||
const basename = path.basename(txt.split('.')[0])
|
||||
const labelPath = path.resolve(labelsDir, basename+'.txt')
|
||||
const [detectionData, labelData] = await Promise.all([fs.promises.readFile(detectionPath, 'utf8'), fs.promises.readFile(labelPath, 'utf8')])
|
||||
const detections = parseDetections(detectionData)
|
||||
const labels = parseLabels(labelData)
|
||||
|
||||
return {
|
||||
basename,
|
||||
result: compare(labels, detections)
|
||||
}
|
||||
}
|
||||
|
||||
async function main() {
|
||||
const names = (await fs.promises.readFile(namesFile, 'utf8')).split('\n').map(t=>t.trim())
|
||||
names.n = '?'
|
||||
names.sum = 'sum'
|
||||
const files = await fs.promises.readdir(detectionsDir)
|
||||
const txts = files.filter(p => path.extname(p) == '.txt')
|
||||
//console.log("OUTPUT TXT FILES", txts.length)
|
||||
const promises = txts.map(compareLabelsAndResults)
|
||||
const compareResults = await Promise.all(promises)
|
||||
await fs.promises.mkdir(path.resolve(detectionsDir, 'errors')).catch(e => {})
|
||||
const summary = {}
|
||||
const copyPromises = []
|
||||
for(const result of compareResults) {
|
||||
let errors = []
|
||||
for(const c in result.result) {
|
||||
if(!summary[c]) summary[c] = {}
|
||||
for(const r in result.result[c]) {
|
||||
summary[c][r] = (summary[c][r] || 0) + result.result[c][r]
|
||||
if( c!=r ) errors.push([c, r, result.result[c][r]])
|
||||
}
|
||||
}
|
||||
if(errors.length > 0) {
|
||||
copyPromises.push(fs.promises.copyFile(
|
||||
path.resolve(detectionsDir, result.basename + '.jpg'),
|
||||
path.resolve(detectionsDir, 'errors', result.basename + '.jpg')
|
||||
))
|
||||
copyPromises.push(fs.promises.writeFile(
|
||||
path.resolve(detectionsDir, 'errors', result.basename + '.tsv'),
|
||||
errors.map(([c1,c2,cnt]) => [ names[c1], names[c2], cnt ].join('\t')).join('\n'), 'utf8'))
|
||||
}
|
||||
}
|
||||
//console.log("S", summary)
|
||||
let rows = Object.keys(summary).filter(k=>k!='n').sort().concat(['n'])
|
||||
summary.sum = {}
|
||||
for(const row of rows) {
|
||||
if(!summary[row]) summary[row] = {}
|
||||
const rowSum = rows.map(r => summary[row][r] || 0).reduce( (a, b) => a + b, 0)
|
||||
const columnSum = rows.map(r => summary[r] && summary[r][row] || 0).reduce( (a, b) => a + b, 0)
|
||||
summary[row].sum = rowSum
|
||||
summary.sum[row] = columnSum
|
||||
}
|
||||
summaryRows = rows.concat(['sum'])
|
||||
let tsvRows = []
|
||||
tsvRows.push('Count:')
|
||||
tsvRows.push([' ', ...(summaryRows.map(n=>names[n]))].join('\t'))
|
||||
for(const row of summaryRows) {
|
||||
const summaryPart = summary[row] || {}
|
||||
tsvRows.push([ names[row], ...(summaryRows.map(r => summaryPart[r]))].join('\t'))
|
||||
}
|
||||
|
||||
summaryRows.pop()
|
||||
tsvRows.push('Fraction:')
|
||||
tsvRows.push([' ', ...(summaryRows.map(n=>names[n]))].join('\t'))
|
||||
for(const row of summaryRows) {
|
||||
const summaryPart = summary[row] || {}
|
||||
const sum = row != 'sum' ? summaryPart.sum : summary.sum[row]
|
||||
tsvRows.push([ names[row], ...(summaryRows.map(r => summaryPart[r] && (summaryPart[r] / sum).toFixed(2)))].join('\t'))
|
||||
}
|
||||
|
||||
const allLabeled = rows.slice(0, -1).map(r => summary.sum[r]).reduce((a, b) => a + b, 0)
|
||||
const allDetected = rows.slice(0, -1).map(r => summary[r].sum).reduce((a, b) => a + b, 0)
|
||||
const falseNegatives = rows.slice(0, -1).map(r => summary.n[r] || 0).reduce((a, b) => a + b, 0)
|
||||
const falsePositives = rows.slice(0, -1).map(r => summary[r].n || 0).reduce((a, b) => a + b, 0)
|
||||
const right = rows.slice(0, -1).map(r => summary[r][r] || 0).reduce((a, b) => a + b, 0)
|
||||
const mistakes = rows.slice(0, -1).map(a => rows.slice(0, -1).map(b => (a!=b && summary[a][b]) || 0).reduce((a, b) => a + b, 0)).reduce((a, b) => a + b, 0)
|
||||
|
||||
console.log(`right:\t${right}\t${(right/allLabeled).toFixed(3)}`)
|
||||
console.log(`false positives:\t${falsePositives}\t${(falsePositives/allLabeled).toFixed(3)}`)
|
||||
console.log(`false negatives:\t${falseNegatives}\t${(falseNegatives/allLabeled).toFixed(3)}`)
|
||||
console.log(`mistakes:\t${mistakes}\t${(mistakes/allLabeled).toFixed(3)}`)
|
||||
console.log(`labeled:\t${allLabeled}`)
|
||||
console.log(`detected:\t${allDetected}`)
|
||||
|
||||
let tsv = tsvRows.join('\n')
|
||||
console.log(tsv)
|
||||
await Promise.all(copyPromises)
|
||||
}
|
||||
|
||||
main()
|
|
@ -0,0 +1,151 @@
|
|||
# - *- coding: utf- 8 - *-
|
||||
import sys
|
||||
import os
|
||||
import re
|
||||
import xml.etree.ElementTree as ET
|
||||
from glob import glob
|
||||
from os.path import join
|
||||
from pathlib import Path
|
||||
|
||||
# This should just be a folder of xmls
|
||||
annotations = sys.argv[1]
|
||||
# Then you have a folder of txts.
|
||||
modified_annotations = sys.argv[2]
|
||||
|
||||
|
||||
def convert(size, box):
|
||||
dw = 1. / (size[0])
|
||||
dh = 1. / (size[1])
|
||||
x = (box[0] + box[1]) / 2.0 - 1
|
||||
y = (box[2] + box[3]) / 2.0 - 1
|
||||
w = box[1] - box[0]
|
||||
h = box[3] - box[2]
|
||||
x = round(x * dw, 4)
|
||||
w = round(w * dw, 4)
|
||||
y = round(y * dh, 4)
|
||||
h = round(h * dh, 4)
|
||||
return (x, y, w, h)
|
||||
|
||||
|
||||
def map_class_name_to_id(class_name, xml_document, class_distribution):
|
||||
if class_name in ['1. rower']:
|
||||
class_distribution[0] += 1
|
||||
return 0
|
||||
elif class_name in ['2. motocykl']:
|
||||
class_distribution[1] += 1
|
||||
return 1
|
||||
elif class_name in ['3. osobowy']:
|
||||
class_distribution[2] += 1
|
||||
return 2
|
||||
elif class_name in ['4. osobowy pickup']:
|
||||
class_distribution[3] += 1
|
||||
return 3
|
||||
elif class_name in ['5. osobowy dostawczy']:
|
||||
class_distribution[4] += 1
|
||||
return 4
|
||||
elif class_name in ['6. osobowy van 7-9']:
|
||||
class_distribution[5] += 1
|
||||
return 5
|
||||
elif class_name in ['7. dostawczy blaszak']:
|
||||
class_distribution[6] += 1
|
||||
return 6
|
||||
elif class_name in ['8. dostawczy zabudowany']:
|
||||
class_distribution[7] += 1
|
||||
return 7
|
||||
elif class_name in ['9. dostawczy pickup (w tym pomoc drog.)']:
|
||||
class_distribution[8] += 1
|
||||
return 8
|
||||
elif class_name in ['10. dostawczy VAN (osobowy)']:
|
||||
class_distribution[9] += 1
|
||||
return 9
|
||||
elif class_name in ['11. autobus mały 10-24']:
|
||||
return -1
|
||||
elif class_name in ['12. autobus miejski']:
|
||||
class_distribution[10] += 1
|
||||
return 10
|
||||
elif class_name in ['13. autobus turystyczny i inny']:
|
||||
return -1
|
||||
elif class_name in ['14. ciężarowy pow. 3,5t zabudowany']:
|
||||
class_distribution[11] += 1
|
||||
return 11
|
||||
elif class_name in ['15. ciężarowy pow. 3,5t otwarty (w tym duży holownik)']:
|
||||
class_distribution[12] += 1
|
||||
return 12
|
||||
elif class_name in ['16. ciężarowy pow. 3,5t inny (wanna, gruszka, dźwig itp.)']:
|
||||
class_distribution[13] += 1
|
||||
return 13
|
||||
elif class_name in ['17. ciężarowy z widoczną przyczepą']:
|
||||
return -1
|
||||
elif class_name in ['18. ciągnik siodłowy z widoczną naczepą']:
|
||||
class_distribution[14] += 1
|
||||
return 14
|
||||
elif class_name in ['19. ciągnik siodłowy bez naczepy']:
|
||||
class_distribution[15] += 1
|
||||
return 15
|
||||
elif class_name in ['20. camper']:
|
||||
class_distribution[15] += 1
|
||||
return -1
|
||||
elif class_name in ['22. ciągnik roliczy, koparka, spychacz']:
|
||||
return -1
|
||||
elif class_name in ['23. inne pojazdy silnikowe']:
|
||||
return -1
|
||||
elif class_name in ['24. przyczepa']:
|
||||
class_distribution[16] += 1
|
||||
return 16
|
||||
elif class_name in ['25. BUS-karetka/policja']:
|
||||
class_distribution[17] += 1
|
||||
return 17
|
||||
else:
|
||||
raise Exception('Unknown Class ', xml_document, class_name)
|
||||
|
||||
|
||||
def generate_txt_from_xml():
|
||||
class_distribution = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
|
||||
filepaths = glob(annotations + '*.xml')
|
||||
for filepath in filepaths:
|
||||
txtpath = join(modified_annotations, re.sub(r"\.xml$", ".txt", os.path.basename(filepath)))
|
||||
|
||||
in_file = open(filepath, mode='r', encoding='utf-8')
|
||||
|
||||
tree = ET.parse(in_file)
|
||||
root = tree.getroot()
|
||||
size = root.find('size')
|
||||
w = int(size.find('width').text)
|
||||
h = int(size.find('height').text)
|
||||
|
||||
good_file = True
|
||||
|
||||
for obj in root.iter('object'):
|
||||
#difficult = obj.find('difficult').text
|
||||
class_label = obj.find('name').text
|
||||
#if int(difficult) == 1:
|
||||
# raise Exception("Difficult == 1")
|
||||
cls_id = map_class_name_to_id(class_label, filepath, class_distribution)
|
||||
if cls_id == -1 :
|
||||
good_file = False
|
||||
|
||||
if not good_file :
|
||||
print('File discarded.')
|
||||
continue
|
||||
|
||||
Path(txtpath).touch()
|
||||
out_file = open(txtpath, mode='w', encoding='utf-8')
|
||||
|
||||
for obj in root.iter('object'):
|
||||
#difficult = obj.find('difficult').text
|
||||
class_label = obj.find('name').text
|
||||
#if int(difficult) == 1:
|
||||
# raise Exception("Difficult == 1")
|
||||
cls_id = map_class_name_to_id(class_label, filepath, class_distribution)
|
||||
if cls_id != -1 :
|
||||
xmlbox = obj.find('bndbox')
|
||||
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
|
||||
float(xmlbox.find('ymax').text))
|
||||
bb = convert((w, h), b)
|
||||
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
|
||||
|
||||
|
||||
print(class_distribution)
|
||||
|
||||
generate_txt_from_xml()
|
|
@ -0,0 +1,100 @@
|
|||
import argparse
|
||||
import datetime
|
||||
import glob
|
||||
import io
|
||||
import ntpath
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
|
||||
from config import Configuration
|
||||
|
||||
|
||||
def call_training_script(config):
|
||||
cmd = '/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/train.py '
|
||||
cmd += config.train.get_args_string()
|
||||
print("_______ CALLING TRAINING SCRIPT _______")
|
||||
print(cmd)
|
||||
|
||||
os.chdir('..')
|
||||
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True)
|
||||
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of training process to console
|
||||
print(line)
|
||||
return cmd
|
||||
|
||||
def move_training_results_to_experiments_dir(config):
|
||||
training_results_dir_path = os.path.join(config.experiments.dir, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
|
||||
print("_______ CALLING MOVING RESULTS _______")
|
||||
print(f"MOVING RESUTLS TO {training_results_dir_path}")
|
||||
|
||||
|
||||
os.mkdir(training_results_dir_path)
|
||||
|
||||
weights_path = os.path.join(training_results_dir_path, 'best.pt')
|
||||
shutil.move('/home/tomekb/yolov3/weights/best.pt', weights_path) #move best weights
|
||||
|
||||
names_path = open(config.train.data).readlines()[3].split('=')[-1].rstrip() # read names path from file
|
||||
names_file_name = ntpath.basename(names_path)
|
||||
experiment_names_path = os.path.join(training_results_dir_path, names_file_name)
|
||||
shutil.copy(names_path, experiment_names_path) # copy names to created experiment dir with training results
|
||||
|
||||
tensorboard_dir = './runs'
|
||||
last_modified_tensorboard_dir = max(glob.glob(os.path.join(tensorboard_dir, '*/')), key=os.path.getmtime)
|
||||
shutil.move(last_modified_tensorboard_dir, os.path.join(training_results_dir_path)) #saving related tensorboard dir
|
||||
|
||||
shutil.copy2(config.config_path, training_results_dir_path) #copying configuration yaml
|
||||
|
||||
|
||||
#for test purposes only
|
||||
shutil.copy2('/home/tomekb/yolov3/experiments/1/best.pt', training_results_dir_path)
|
||||
|
||||
return weights_path, experiment_names_path, training_results_dir_path
|
||||
|
||||
|
||||
def call_detection_script(config, weights_path, names_path, dir):
|
||||
detect_output_dir = os.path.join(dir, 'output')
|
||||
cmd = f"""/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/detect.py
|
||||
--cfg {config.train.cfg}
|
||||
--source {config.detect.source}
|
||||
--output {detect_output_dir}
|
||||
--names {names_path}
|
||||
--weights {weights_path}
|
||||
--test-img-size {getattr(config.detect, 'test-img-size')}
|
||||
--conf-thres {getattr(config.detect, 'conf-thres')}
|
||||
--iou-thres {getattr(config.detect, 'iou-thres')}"""
|
||||
cmd += " --save-txt" if getattr(config.detect, 'save-txt') else ""
|
||||
cmd += " --agnostic-nms" if getattr(config.detect, 'agnostic-nms') else ""
|
||||
cmd += " --agument" if getattr(config.detect, 'augment') else ""
|
||||
cmd += f" --device {config.train.device}" if config.train.device else ""
|
||||
|
||||
cmd = " ".join(cmd.split())
|
||||
|
||||
|
||||
print("_______ CALLING DETECTION SCRIPT _______")
|
||||
print(cmd)
|
||||
|
||||
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True)
|
||||
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console
|
||||
print(line)
|
||||
return detect_output_dir
|
||||
|
||||
|
||||
def call_generate_confussion_matrix(detect_output_dir, config, names_path, train_results_dir):
|
||||
labels_dir = getattr(config.confussion_matrix, 'labels-dir')
|
||||
|
||||
cmd = f"node ./our_scripts/generate-confusion-matrix.js {detect_output_dir} {labels_dir} {names_path} > {train_results_dir}/confussion-matrix.tsv"
|
||||
process = subprocess.Popen(cmd, stdout=subprocess.PIPE,shell=True)
|
||||
print("_______ CALLING CONFUSSION MATRIX SCRIPT _______")
|
||||
print(cmd)
|
||||
for line in io.TextIOWrapper(process.stdout, encoding="utf-8"): # print output of process to console
|
||||
print(line)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
config = Configuration()
|
||||
|
||||
train_cmd = call_training_script(config)
|
||||
weights_path, names_path,train_results_dir = move_training_results_to_experiments_dir(config)
|
||||
detect_output_dir = call_detection_script(config, weights_path, names_path,train_results_dir)
|
||||
call_generate_confussion_matrix(detect_output_dir, config, names_path,train_results_dir)
|
|
@ -0,0 +1,20 @@
|
|||
#!/usr/bin/env bash
|
||||
/home/tomekb/miniconda3/envs/conda3.7/bin/python -u /home/tomekb/yolov3/our_scripts/run_yolov3_process.py \
|
||||
--epochs 50 \
|
||||
--batch-size 8 \
|
||||
--cfg /cfg/yolov3-spp-18cls.cfg \
|
||||
--data ./data/widok01-11.data \
|
||||
--multi-scale \
|
||||
--img-size 512 896 \
|
||||
`# --cache-images` \
|
||||
--adam \
|
||||
--device 0 \
|
||||
`# poniżej parametry do detect.py` \
|
||||
--source /home/michall/yolov3/data/widok01-11_test_labels.txt \
|
||||
--test-img-size 1024 \
|
||||
--conf-thres 0.3 \
|
||||
--iou-thres 0.6 \
|
||||
--save-txt \
|
||||
`# poniżej parametry do generate-confussion-matrix.js` \
|
||||
--labels-dir ./data/widok01-11_labels
|
||||
|
8
train.py
8
train.py
|
@ -9,6 +9,8 @@ import test # import test.py to get mAP after each epoch
|
|||
from models import *
|
||||
from utils.datasets import *
|
||||
from utils.utils import *
|
||||
from our_scripts.config import Configuration
|
||||
|
||||
|
||||
mixed_precision = True
|
||||
try: # Mixed precision training https://github.com/NVIDIA/apex
|
||||
|
@ -399,7 +401,7 @@ if __name__ == '__main__':
|
|||
check_git_status()
|
||||
opt.cfg = check_file(opt.cfg) # check file
|
||||
opt.data = check_file(opt.data) # check file
|
||||
print(opt)
|
||||
#print(opt)
|
||||
opt.img_size.extend([opt.img_size[-1]] * (3 - len(opt.img_size))) # extend to 3 sizes (min, max, test)
|
||||
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
|
||||
if device.type == 'cpu':
|
||||
|
@ -408,6 +410,10 @@ if __name__ == '__main__':
|
|||
# scale hyp['obj'] by img_size (evolved at 320)
|
||||
# hyp['obj'] *= opt.img_size[0] / 320.
|
||||
|
||||
|
||||
hyp = Configuration().train.other_hyps.__dict__
|
||||
|
||||
|
||||
tb_writer = None
|
||||
if not opt.evolve: # Train normally
|
||||
print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
|
||||
|
|
|
@ -44,11 +44,10 @@ def exif_size(img):
|
|||
class LoadImages: # for inference
|
||||
def __init__(self, path, img_size=416):
|
||||
path = str(Path(path)) # os-agnostic
|
||||
files = []
|
||||
if os.path.isdir(path):
|
||||
files = sorted(glob.glob(os.path.join(path, '*.*')))
|
||||
elif os.path.isfile(path):
|
||||
files = [path]
|
||||
files = [f.strip() for f in open(path, 'r').readlines()]
|
||||
|
||||
|
||||
|
||||
|
||||
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
|
||||
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
|
||||
|
|
Loading…
Reference in New Issue