246 lines
9.3 KiB
Python
246 lines
9.3 KiB
Python
import argparse
|
|
import time
|
|
|
|
import torch.distributed as dist
|
|
from torch.utils.data import DataLoader
|
|
|
|
import test # Import test.py to get mAP after each epoch
|
|
from models import *
|
|
from utils.datasets import *
|
|
from utils.utils import *
|
|
|
|
|
|
def train(
|
|
cfg,
|
|
data_cfg,
|
|
img_size=416,
|
|
resume=False,
|
|
epochs=270,
|
|
batch_size=16,
|
|
accumulate=1,
|
|
multi_scale=False,
|
|
freeze_backbone=False,
|
|
num_workers=4,
|
|
transfer=False # Transfer learning (train only YOLO layers)
|
|
|
|
):
|
|
weights = 'weights' + os.sep
|
|
latest = weights + 'latest.pt'
|
|
best = weights + 'best.pt'
|
|
device = torch_utils.select_device()
|
|
|
|
if multi_scale:
|
|
img_size = 608 # initiate with maximum multi_scale size
|
|
num_workers = 0 # bug https://github.com/ultralytics/yolov3/issues/174
|
|
else:
|
|
torch.backends.cudnn.benchmark = True # unsuitable for multiscale
|
|
|
|
# Configure run
|
|
train_path = parse_data_cfg(data_cfg)['train']
|
|
|
|
# Initialize model
|
|
model = Darknet(cfg, img_size).to(device)
|
|
|
|
# Optimizer
|
|
lr0 = 0.001 # initial learning rate
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=lr0, momentum=0.9, weight_decay=0.0005)
|
|
|
|
cutoff = -1 # backbone reaches to cutoff layer
|
|
start_epoch = 0
|
|
best_loss = float('inf')
|
|
yl = get_yolo_layers(model) # yolo layers
|
|
nf = int(model.module_defs[yl[0] - 1]['filters']) # yolo layer size (i.e. 255)
|
|
|
|
if resume: # Load previously saved model
|
|
if transfer: # Transfer learning
|
|
chkpt = torch.load(weights + 'yolov3-spp.pt', map_location=device)
|
|
model.load_state_dict({k: v for k, v in chkpt['model'].items() if v.numel() > 1 and v.shape[0] != 255},
|
|
strict=False)
|
|
for p in model.parameters():
|
|
p.requires_grad = True if p.shape[0] == nf else False
|
|
|
|
else: # resume from latest.pt
|
|
chkpt = torch.load(latest, map_location=device) # load checkpoint
|
|
model.load_state_dict(chkpt['model'])
|
|
|
|
start_epoch = chkpt['epoch'] + 1
|
|
if chkpt['optimizer'] is not None:
|
|
optimizer.load_state_dict(chkpt['optimizer'])
|
|
best_loss = chkpt['best_loss']
|
|
del chkpt
|
|
|
|
else: # Initialize model with backbone (optional)
|
|
if '-tiny.cfg' in cfg:
|
|
cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
|
|
else:
|
|
cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
|
|
|
|
# Set scheduler (reduce lr at epoch 250)
|
|
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[250], gamma=0.1, last_epoch=start_epoch - 1)
|
|
|
|
# Dataset
|
|
dataset = LoadImagesAndLabels(train_path, img_size=img_size, augment=True)
|
|
|
|
# Initialize distributed training
|
|
if torch.cuda.device_count() > 1:
|
|
dist.init_process_group(backend=opt.backend, init_method=opt.dist_url, world_size=opt.world_size, rank=opt.rank)
|
|
model = torch.nn.parallel.DistributedDataParallel(model)
|
|
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
|
|
else:
|
|
sampler = None
|
|
|
|
# Dataloader
|
|
dataloader = DataLoader(dataset,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
shuffle=False,
|
|
pin_memory=False,
|
|
collate_fn=dataset.collate_fn,
|
|
sampler=sampler)
|
|
|
|
# Start training
|
|
t = time.time()
|
|
model_info(model)
|
|
nB = len(dataloader)
|
|
n_burnin = min(round(nB / 5 + 1), 1000) # burn-in batches
|
|
for epoch in range(start_epoch, epochs):
|
|
model.train()
|
|
print(('\n%8s%12s' + '%10s' * 7) % ('Epoch', 'Batch', 'xy', 'wh', 'conf', 'cls', 'total', 'nTargets', 'time'))
|
|
|
|
# Update scheduler
|
|
scheduler.step()
|
|
|
|
# Freeze backbone at epoch 0, unfreeze at epoch 1
|
|
if freeze_backbone and epoch < 2:
|
|
for name, p in model.named_parameters():
|
|
if int(name.split('.')[1]) < cutoff: # if layer < 75
|
|
p.requires_grad = False if epoch == 0 else True
|
|
|
|
mloss = defaultdict(float) # mean loss
|
|
for i, (imgs, targets, _, _) in enumerate(dataloader):
|
|
imgs = imgs.to(device)
|
|
targets = targets.to(device)
|
|
|
|
nT = len(targets)
|
|
if nT == 0: # if no targets continue
|
|
continue
|
|
|
|
# Plot images with bounding boxes
|
|
plot_images = False
|
|
if plot_images:
|
|
fig = plt.figure(figsize=(10, 10))
|
|
for ip in range(len(imgs)):
|
|
boxes = xywh2xyxy(targets[targets[:, 0] == ip, 2:6]).numpy().T * img_size
|
|
plt.subplot(4, 4, ip + 1).imshow(imgs[ip].numpy().transpose(1, 2, 0))
|
|
plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
|
|
plt.axis('off')
|
|
fig.tight_layout()
|
|
fig.savefig('batch_%g.jpg' % i, dpi=fig.dpi)
|
|
|
|
# SGD burn-in
|
|
if epoch == 0 and i <= n_burnin:
|
|
lr = lr0 * (i / n_burnin) ** 4
|
|
for x in optimizer.param_groups:
|
|
x['lr'] = lr
|
|
|
|
# Run model
|
|
pred = model(imgs)
|
|
|
|
# Build targets
|
|
target_list = build_targets(model, targets)
|
|
|
|
# Compute loss
|
|
loss, loss_dict = compute_loss(pred, target_list)
|
|
|
|
# Compute gradient
|
|
loss.backward()
|
|
|
|
# Accumulate gradient for x batches before optimizing
|
|
if (i + 1) % accumulate == 0 or (i + 1) == nB:
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Running epoch-means of tracked metrics
|
|
for key, val in loss_dict.items():
|
|
mloss[key] = (mloss[key] * i + val) / (i + 1)
|
|
|
|
s = ('%8s%12s' + '%10.3g' * 7) % (
|
|
'%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nB - 1),
|
|
mloss['xy'], mloss['wh'], mloss['conf'], mloss['cls'],
|
|
mloss['total'], nT, time.time() - t)
|
|
t = time.time()
|
|
print(s)
|
|
|
|
# Multi-Scale training (320 - 608 pixels) every 10 batches
|
|
if multi_scale and (i + 1) % 10 == 0:
|
|
dataset.img_size = random.choice(range(10, 20)) * 32
|
|
print('multi_scale img_size = %g' % dataset.img_size)
|
|
|
|
# Update best loss
|
|
if mloss['total'] < best_loss:
|
|
best_loss = mloss['total']
|
|
|
|
# Save training results
|
|
save = True
|
|
if save:
|
|
# Save latest checkpoint
|
|
chkpt = {'epoch': epoch,
|
|
'best_loss': best_loss,
|
|
'model': model.module.state_dict() if type(
|
|
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
|
|
'optimizer': optimizer.state_dict()}
|
|
torch.save(chkpt, latest)
|
|
|
|
# Save best checkpoint
|
|
if best_loss == mloss['total']:
|
|
torch.save(chkpt, best)
|
|
|
|
# Save backup every 10 epochs (optional)
|
|
if epoch > 0 and epoch % 10 == 0:
|
|
torch.save(chkpt, weights + 'backup%g.pt' % epoch)
|
|
|
|
del chkpt
|
|
|
|
# Calculate mAP
|
|
with torch.no_grad():
|
|
results = test.test(cfg, data_cfg, batch_size=batch_size, img_size=img_size, model=model)
|
|
|
|
# Write epoch results
|
|
with open('results.txt', 'a') as file:
|
|
file.write(s + '%11.3g' * 3 % results + '\n') # append P, R, mAP
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--epochs', type=int, default=270, help='number of epochs')
|
|
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
|
|
parser.add_argument('--accumulate', type=int, default=1, help='accumulate gradient x batches before optimizing')
|
|
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
|
|
parser.add_argument('--data-cfg', type=str, default='data/coco.data', help='coco.data file path')
|
|
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
|
|
parser.add_argument('--img-size', type=int, default=416, help='pixels')
|
|
parser.add_argument('--resume', action='store_true', help='resume training flag')
|
|
parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
|
|
parser.add_argument('--num-workers', type=int, default=4, help='number of Pytorch DataLoader workers')
|
|
parser.add_argument('--dist-url', default='tcp://127.0.0.1:9999', type=str, help='distributed training init method')
|
|
parser.add_argument('--rank', default=0, type=int, help='distributed training node rank')
|
|
parser.add_argument('--world-size', default=1, type=int, help='number of nodes for distributed training')
|
|
parser.add_argument('--backend', default='nccl', type=str, help='distributed backend')
|
|
opt = parser.parse_args()
|
|
print(opt, end='\n\n')
|
|
|
|
init_seeds()
|
|
|
|
train(
|
|
opt.cfg,
|
|
opt.data_cfg,
|
|
img_size=opt.img_size,
|
|
resume=opt.resume or opt.transfer,
|
|
transfer=opt.transfer,
|
|
epochs=opt.epochs,
|
|
batch_size=opt.batch_size,
|
|
accumulate=opt.accumulate,
|
|
multi_scale=opt.multi_scale,
|
|
num_workers=opt.num_workers
|
|
)
|