150 lines
5.7 KiB
Python
150 lines
5.7 KiB
Python
import argparse
|
|
|
|
from models import *
|
|
from utils.datasets import *
|
|
from utils.utils import *
|
|
|
|
from utils import torch_utils
|
|
|
|
|
|
def test(
|
|
cfg,
|
|
data_cfg,
|
|
weights,
|
|
batch_size=16,
|
|
img_size=416,
|
|
iou_thres=0.5,
|
|
conf_thres=0.3,
|
|
nms_thres=0.45,
|
|
):
|
|
device = torch_utils.select_device()
|
|
|
|
# Configure run
|
|
data_cfg = parse_data_cfg(data_cfg)
|
|
nC = int(data_cfg['classes']) # number of classes (80 for COCO)
|
|
test_path = data_cfg['valid']
|
|
|
|
# Initiate model
|
|
model = Darknet(cfg, img_size)
|
|
|
|
# Load weights
|
|
if weights.endswith('.pt'): # pytorch format
|
|
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
|
|
else: # darknet format
|
|
load_darknet_weights(model, weights)
|
|
|
|
model.to(device).eval()
|
|
|
|
# Get dataloader
|
|
# dataset = load_images_with_labels(test_path)
|
|
# dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=n_cpus)
|
|
dataloader = load_images_and_labels(test_path, batch_size=batch_size, img_size=img_size)
|
|
|
|
mean_mAP, mean_R, mean_P = 0.0, 0.0, 0.0
|
|
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP'))
|
|
outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class = [], [], [], [], [], [], [], []
|
|
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
|
|
for batch_i, (imgs, targets) in enumerate(dataloader):
|
|
|
|
with torch.no_grad():
|
|
output = model(imgs.to(device))
|
|
output = non_max_suppression(output, conf_thres=conf_thres, nms_thres=nms_thres)
|
|
|
|
# Compute average precision for each sample
|
|
for sample_i, (labels, detections) in enumerate(zip(targets, output)):
|
|
correct = []
|
|
|
|
if detections is None:
|
|
# If there are no detections but there are labels mask as zero AP
|
|
if labels.size(0) != 0:
|
|
mAPs.append(0), mR.append(0), mP.append(0)
|
|
continue
|
|
|
|
# Get detections sorted by decreasing confidence scores
|
|
detections = detections.cpu().numpy()
|
|
detections = detections[np.argsort(-detections[:, 4])]
|
|
|
|
# If no labels add number of detections as incorrect
|
|
if labels.size(0) == 0:
|
|
# correct.extend([0 for _ in range(len(detections))])
|
|
mAPs.append(0), mR.append(0), mP.append(0)
|
|
continue
|
|
else:
|
|
target_cls = labels[:, 0]
|
|
|
|
# Extract target boxes as (x1, y1, x2, y2)
|
|
target_boxes = xywh2xyxy(labels[:, 1:5]) * img_size
|
|
|
|
detected = []
|
|
for *pred_bbox, conf, obj_conf, obj_pred in detections:
|
|
|
|
pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1)
|
|
# Compute iou with target boxes
|
|
iou = bbox_iou(pred_bbox, target_boxes)
|
|
# Extract index of largest overlap
|
|
best_i = np.argmax(iou)
|
|
# If overlap exceeds threshold and classification is correct mark as correct
|
|
if iou[best_i] > iou_thres and obj_pred == labels[best_i, 0] and best_i not in detected:
|
|
correct.append(1)
|
|
detected.append(best_i)
|
|
else:
|
|
correct.append(0)
|
|
|
|
# Compute Average Precision (AP) per class
|
|
AP, AP_class, R, P = ap_per_class(tp=correct, conf=detections[:, 4], pred_cls=detections[:, 6],
|
|
target_cls=target_cls)
|
|
|
|
# Accumulate AP per class
|
|
AP_accum_count += np.bincount(AP_class, minlength=nC)
|
|
AP_accum += np.bincount(AP_class, minlength=nC, weights=AP)
|
|
|
|
# Compute mean AP across all classes in this image, and append to image list
|
|
mAPs.append(AP.mean())
|
|
mR.append(R.mean())
|
|
mP.append(P.mean())
|
|
|
|
# Means of all images
|
|
mean_mAP = np.mean(mAPs)
|
|
mean_R = np.mean(mR)
|
|
mean_P = np.mean(mP)
|
|
|
|
# Print image mAP and running mean mAP
|
|
print(('%11s%11s' + '%11.3g' * 3) % (len(mAPs), dataloader.nF, mean_P, mean_R, mean_mAP))
|
|
|
|
# Print mAP per class
|
|
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:')
|
|
|
|
classes = load_classes(data_cfg['names']) # Extracts class labels from file
|
|
for i, c in enumerate(classes):
|
|
print('%15s: %-.4f' % (c, AP_accum[i] / AP_accum_count[i]))
|
|
|
|
# Return mAP
|
|
return mean_mAP, mean_R, mean_P
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(prog='test.py')
|
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
|
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='path to model config file')
|
|
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='path to data config file')
|
|
parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file')
|
|
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
|
|
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
|
|
parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
|
|
parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension')
|
|
opt = parser.parse_args()
|
|
print(opt, end='\n\n')
|
|
|
|
init_seeds()
|
|
|
|
mAP = test(
|
|
opt.cfg,
|
|
opt.data_cfg,
|
|
opt.weights,
|
|
batch_size=opt.batch_size,
|
|
img_size=opt.img_size,
|
|
iou_thres=opt.iou_thres,
|
|
conf_thres=opt.conf_thres,
|
|
nms_thres=opt.nms_thres,
|
|
)
|