car-detection-bayes/our_scripts/config.yml

59 lines
1.6 KiB
YAML

train:
epochs: 2
batch-size: 400
cfg: ./cfg/yolov3-spp-18cls.cfg
data: ./data/widok01-11.data
multi-scale: false
img-size: '64 128'
rect: false
resume: false
nosave: false
notest: false
evolve: false
bucket:
cache-images: false
weights: /home/tomekb/yolov3/weights/yolov3-spp-ultralytics.pt
device: 1
adam: true
single-cls: false
# inne hiperparametry
other-hyps:
giou: 3.53 # giou loss gain
cls: 37.4 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 64.3 # obj loss gain (*=img_size/320 if img_size != 320)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # iou training threshold
lr0: 0.01 # initial learning rate (SGD=5E-3 Adam=5E-4)
lrf: 0.0005 # final learning rate (with cos scheduler)
momentum: 0.937 # SGD momentum
weight_decay: 0.0005 # optimizer weight decay
fl_gamma: 0.0 # focal loss gamma (efficientDet default is gamma=1.5)
hsv_h: 0.0138 # image HSV-Hue augmentation (fraction)
hsv_s: 0.678 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.36 # image HSV-Value augmentation (fraction)
degrees: 0 # 1.98 * 0 # image rotation (+/- deg)
translate: 0 # 0.05 * 0 # image translation (+/- fraction)
scale: 0 #0 .05 * 0 # image scale (+/- gain)
shear: 0 # 0.641 * 0 # image shear (+/- deg)
experiments:
dir: ./experiments
detect:
source: /home/michall/yolov3/data/widok01-11_test_labels.txt
test-img-size: 1024
conf-thres: 0.3
iou-thres: 0.6
save-txt: true
classes:
agnostic-nms:
augment:
confussion-matrix:
labels-dir: ./data/widok01-11_labels
bayes:
todo: todo