218 lines
8.8 KiB
Python
218 lines
8.8 KiB
Python
import argparse
|
|
import json
|
|
from pathlib import Path
|
|
|
|
from models import *
|
|
from utils.datasets import *
|
|
from utils.utils import *
|
|
|
|
|
|
def test(
|
|
cfg,
|
|
data_cfg,
|
|
weights,
|
|
batch_size=16,
|
|
img_size=416,
|
|
iou_thres=0.5,
|
|
conf_thres=0.3,
|
|
nms_thres=0.45,
|
|
save_json=False
|
|
):
|
|
device = torch_utils.select_device()
|
|
|
|
# Configure run
|
|
data_cfg_dict = parse_data_cfg(data_cfg)
|
|
nC = int(data_cfg_dict['classes']) # number of classes (80 for COCO)
|
|
test_path = data_cfg_dict['valid']
|
|
|
|
# Initialize model
|
|
model = Darknet(cfg, img_size)
|
|
|
|
# Load weights
|
|
if weights.endswith('.pt'): # pytorch format
|
|
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
|
|
else: # darknet format
|
|
load_darknet_weights(model, weights)
|
|
|
|
model.to(device).eval()
|
|
|
|
# Get dataloader
|
|
# dataloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path), batch_size=batch_size) # pytorch
|
|
dataloader = LoadImagesAndLabels(test_path, batch_size=batch_size, img_size=img_size)
|
|
|
|
# Create JSON
|
|
jdict = []
|
|
float3 = lambda x: float(format(x, '.3f')) # print json to 3 decimals
|
|
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
|
|
|
mean_mAP, mean_R, mean_P, seen = 0.0, 0.0, 0.0, 0
|
|
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP'))
|
|
outputs, mAPs, mR, mP, TP, confidence, pred_class, target_class = [], [], [], [], [], [], [], []
|
|
AP_accum, AP_accum_count = np.zeros(nC), np.zeros(nC)
|
|
for batch_i, (imgs, targets, paths, shapes) in enumerate(dataloader):
|
|
output = model(imgs.to(device))
|
|
output = non_max_suppression(output, conf_thres=conf_thres, nms_thres=nms_thres)
|
|
|
|
# Compute average precision for each sample
|
|
for si, (labels, detections) in enumerate(zip(targets, output)):
|
|
seen += 1
|
|
|
|
if detections is None:
|
|
# If there are labels but no detections mark as zero AP
|
|
if labels.size(0) != 0:
|
|
mAPs.append(0), mR.append(0), mP.append(0)
|
|
continue
|
|
|
|
# Get detections sorted by decreasing confidence scores
|
|
detections = detections.cpu().numpy()
|
|
detections = detections[np.argsort(-detections[:, 4])]
|
|
|
|
# Save JSON
|
|
if save_json:
|
|
# rescale box to original image size, top left origin
|
|
sbox = torch.from_numpy(detections[:, :4]).clone() # x1y1x2y2
|
|
scale_coords(img_size, sbox, shapes[si])
|
|
sbox = xyxy2xywh(sbox)
|
|
sbox[:, :2] -= sbox[:, 2:] / 2 # origin from center to corner
|
|
|
|
for di, d in enumerate(detections):
|
|
jdict.append({ # add to json dictionary
|
|
'image_id': int(Path(paths[si]).stem.split('_')[-1]),
|
|
'category_id': darknet2coco_class(int(d[6])),
|
|
'bbox': [float3(x) for x in sbox[di]],
|
|
'score': float3(d[4] * d[5])
|
|
})
|
|
|
|
# If no labels add number of detections as incorrect
|
|
correct = []
|
|
if labels.size(0) == 0:
|
|
# correct.extend([0 for _ in range(len(detections))])
|
|
mAPs.append(0), mR.append(0), mP.append(0)
|
|
continue
|
|
else:
|
|
target_cls = labels[:, 0]
|
|
|
|
# Extract target boxes as (x1, y1, x2, y2)
|
|
target_boxes = xywh2xyxy(labels[:, 1:5]) * img_size
|
|
|
|
detected = []
|
|
for *pred_bbox, conf, obj_conf, obj_pred in detections:
|
|
|
|
pred_bbox = torch.FloatTensor(pred_bbox).view(1, -1)
|
|
# Compute iou with target boxes
|
|
iou = bbox_iou(pred_bbox, target_boxes)
|
|
# Extract index of largest overlap
|
|
best_i = np.argmax(iou)
|
|
# If overlap exceeds threshold and classification is correct mark as correct
|
|
if iou[best_i] > iou_thres and obj_pred == labels[best_i, 0] and best_i not in detected:
|
|
correct.append(1)
|
|
detected.append(best_i)
|
|
else:
|
|
correct.append(0)
|
|
|
|
# Compute Average Precision (AP) per class
|
|
AP, AP_class, R, P = ap_per_class(tp=correct,
|
|
conf=detections[:, 4],
|
|
pred_cls=detections[:, 6],
|
|
target_cls=target_cls)
|
|
|
|
# Accumulate AP per class
|
|
AP_accum_count += np.bincount(AP_class, minlength=nC)
|
|
AP_accum += np.bincount(AP_class, minlength=nC, weights=AP)
|
|
|
|
# Compute mean AP across all classes in this image, and append to image list
|
|
mAPs.append(AP.mean())
|
|
mR.append(R.mean())
|
|
mP.append(P.mean())
|
|
|
|
# Means of all images
|
|
mean_mAP = np.mean(mAPs)
|
|
mean_R = np.mean(mR)
|
|
mean_P = np.mean(mP)
|
|
|
|
# Print image mAP and running mean mAP
|
|
print(('%11s%11s' + '%11.3g' * 3) % (seen, dataloader.nF, mean_P, mean_R, mean_mAP))
|
|
|
|
# Print mAP per class
|
|
print('%11s' * 5 % ('Image', 'Total', 'P', 'R', 'mAP') + '\n\nmAP Per Class:')
|
|
|
|
classes = load_classes(data_cfg_dict['names']) # Extracts class labels from file
|
|
for i, c in enumerate(classes):
|
|
print('%15s: %-.4f' % (c, AP_accum[i] / (AP_accum_count[i] + 1E-16)))
|
|
|
|
# Save JSON
|
|
if save_json:
|
|
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.img_files]
|
|
with open('results.json', 'w') as file:
|
|
json.dump(jdict, file)
|
|
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
# initialize COCO ground truth api
|
|
cocoGt = COCO('../coco/annotations/instances_val2014.json')
|
|
|
|
# initialize COCO detections api
|
|
cocoDt = cocoGt.loadRes('results.json')
|
|
|
|
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
|
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
|
|
cocoEval.evaluate()
|
|
cocoEval.accumulate()
|
|
cocoEval.summarize()
|
|
|
|
# Return mAP
|
|
return mean_mAP, mean_R, mean_P
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(prog='test.py')
|
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
|
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
|
|
parser.add_argument('--data-cfg', type=str, default='cfg/coco.data', help='coco.data file path')
|
|
parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='path to weights file')
|
|
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
|
|
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
|
|
parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression')
|
|
parser.add_argument('--coco-map', action='store_true', help='use pycocotools mAP')
|
|
parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension')
|
|
opt = parser.parse_args()
|
|
print(opt, end='\n\n')
|
|
|
|
with torch.no_grad():
|
|
mAP = test(
|
|
opt.cfg,
|
|
opt.data_cfg,
|
|
opt.weights,
|
|
opt.batch_size,
|
|
opt.img_size,
|
|
opt.iou_thres,
|
|
opt.conf_thres,
|
|
opt.nms_thres,
|
|
opt.coco_map
|
|
)
|
|
|
|
# Image Total P R mAP # YOLOv3 320
|
|
# 32 5000 0.66 0.597 0.591
|
|
# 64 5000 0.664 0.62 0.604
|
|
# 96 5000 0.653 0.627 0.614
|
|
# 128 5000 0.639 0.623 0.607
|
|
# 160 5000 0.642 0.63 0.616
|
|
# 192 5000 0.651 0.636 0.621
|
|
|
|
# Image Total P R mAP # YOLOv3 416
|
|
# 32 5000 0.635 0.581 0.57
|
|
# 64 5000 0.63 0.591 0.578
|
|
# 96 5000 0.661 0.632 0.622
|
|
# 128 5000 0.659 0.632 0.623
|
|
# 160 5000 0.665 0.64 0.633
|
|
# 192 5000 0.66 0.637 0.63
|
|
|
|
# Image Total P R mAP # YOLOv3 608
|
|
# 32 5000 0.653 0.606 0.591
|
|
# 64 5000 0.653 0.635 0.625
|
|
# 96 5000 0.655 0.642 0.633
|
|
# 128 5000 0.667 0.651 0.642
|
|
# 160 5000 0.663 0.645 0.637
|
|
# 192 5000 0.663 0.643 0.634
|