Go to file
Glenn Jocher d65d64bb7e updates 2019-04-10 16:17:08 +02:00
.github/ISSUE_TEMPLATE Update issue templates 2019-03-25 15:27:09 +01:00
cfg updates 2019-04-02 18:05:25 +02:00
data updates 2019-04-05 16:09:09 +02:00
utils updates 2019-04-09 16:28:14 +02:00
weights updates 2019-03-25 15:32:00 +01:00
.gitignore updates 2019-04-05 16:09:09 +02:00
LICENSE Initial commit 2018-08-26 10:51:39 +02:00
README.md updates 2019-04-10 13:51:33 +02:00
detect.py updates 2019-04-05 15:34:42 +02:00
models.py updates 2019-04-06 16:13:35 +02:00
requirements.txt updates 2019-03-25 18:35:39 +01:00
test.py updates 2019-04-10 16:17:08 +02:00
train.py updates 2019-04-09 12:24:01 +02:00

README.md

v2.2 v3.0

Introduction

This directory contains python software and an iOS App developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.

Description

The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. Credit to Joseph Redmon for YOLO: https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.7 or later with the following pip3 install -U -r requirements.txt packages:

  • numpy
  • torch >= 1.0.0
  • opencv-python
  • tqdm

Tutorials

Training

Start Training: Run train.py to begin training after downloading COCO data with data/get_coco_dataset.sh.

Resume Training: Run train.py --resume resumes training from the latest checkpoint weights/latest.pt.

Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set. Default training settings produce loss plots below, with training speed of 0.6 s/batch on a 1080 Ti (18 epochs/day) or 0.45 s/batch on a 2080 Ti.

Here we see training results from coco_1img.data, coco_10img.data and coco_100img.data, 3 example files available in the data/ folder, which train and test on the first 1, 10 and 100 images of the coco2014 trainval dataset.

from utils import utils; utils.plot_results() results

Image Augmentation

datasets.py applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied only during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.

Augmentation Description
Translation +/- 10% (vertical and horizontal)
Rotation +/- 5 degrees
Shear +/- 2 degrees (vertical and horizontal)
Scale +/- 10%
Reflection 50% probability (horizontal-only)
HSV Saturation +/- 50%
HSV Intensity +/- 50%

Speed

https://cloud.google.com/deep-learning-vm/
Machine type: n1-standard-8 (8 vCPUs, 30 GB memory)
CPU platform: Intel Skylake
GPUs: K80 ($0.198/hr), P4 ($0.279/hr), T4 ($0.353/hr), P100 ($0.493/hr), V100 ($0.803/hr)
HDD: 100 GB SSD
Dataset: COCO train 2014

GPUs batch_size batch time epoch time epoch cost
(images) (s/batch)
1 K80 16 1.43s 175min $0.58
1 P4 8 0.51s 125min $0.58
1 T4 16 0.78s 94min $0.55
1 P100 16 0.39s 48min $0.39
2 P100 32 0.48s 29min $0.47
4 P100 64 0.65s 20min $0.65
1 V100 16 0.25s 31min $0.41
2 V100 32 0.29s 18min $0.48
4 V100 64 0.41s 13min $0.70
8 V100 128 0.49s 7min $0.80

Inference

Run detect.py to apply trained weights to an image, such as zidane.jpg from the data/samples folder:

YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights weights/yolov3.weights

YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.weights

YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights weights/yolov3-spp.weights

Webcam

Run detect.py with webcam=True to show a live webcam feed.

Pretrained Weights

mAP

  • Use test.py --weights weights/yolov3.weights to test the official YOLOv3 weights.
  • Use test.py --weights weights/latest.pt to test the latest training results.
  • Compare to darknet published results https://arxiv.org/abs/1804.02767.
ultralytics/yolov3 darknet
YOLOv3 320 51.8 51.5
YOLOv3 416 55.4 55.3
YOLOv3 608 58.2 57.9
YOLOv3-spp 320 52.4 -
YOLOv3-spp 416 56.5 -
YOLOv3-spp 608 60.7 60.6
sudo rm -rf yolov3 && git clone https://github.com/ultralytics/yolov3
# bash yolov3/data/get_coco_dataset.sh
sudo rm -rf cocoapi && git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
cd yolov3
 
python3 test.py --save-json --conf-thres 0.001 --img-size 608 --batch-size 16
Namespace(batch_size=16, cfg='cfg/yolov3.cfg', conf_thres=0.001, data_cfg='cfg/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3.weights')
Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)
      Image      Total          P          R        mAP
Calculating mAP: 100%|█████████████████████████████████| 313/313 [08:54<00:00,  1.55s/it]
       5000       5000     0.0966      0.786      0.579
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.331
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.582
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.344
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.198
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.362
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.427
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.281
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.437
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.463
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.577
 
python3 test.py --weights weights/yolov3-spp.weights --cfg cfg/yolov3-spp.cfg --save-json --img-size 608 --batch-size 8
Namespace(batch_size=8, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
Using cuda _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', major=7, minor=0, total_memory=16130MB, multi_processor_count=80)
       Image      Total          P          R        mAP
Calculating mAP: 100%|█████████████████████████████████| 625/625 [07:01<00:00,  1.56it/s]
       5000       5000       0.12       0.81      0.611
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.366
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.607
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.386
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.207
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.485
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.296
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.464
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.494
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618

Citation

DOI

Contact

Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.