car-detection-bayes/train.py

393 lines
17 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import time
import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data import DataLoader
import test # import test.py to get mAP after each epoch
from models import *
from utils.datasets import *
from utils.utils import *
# 0.149 0.241 0.126 0.156 6.85 1.008 1.421 0.07989 16.94 6.215 10.61 4.272 0.251 0.001 -4 0.9 0.0005 320 64-1 giou
# 0.111 0.27 0.132 0.131 3.96 1.276 0.3156 0.1425 21.21 6.224 11.59 8.83 0.376 0.001 -4 0.9 0.0005
hyp = {'giou': 1.008, # giou loss gain
'xy': 4.062, # xy loss gain
'wh': 0.1845, # wh loss gain
'cls': 16.94, # cls loss gain
'cls_pw': 6.215, # cls BCELoss positive_weight
'conf': 10.61, # conf loss gain
'conf_pw': 4.272, # conf BCELoss positive_weight
'iou_t': 0.251, # iou target-anchor training threshold
'lr0': 0.001, # initial learning rate
'lrf': -4., # final learning rate = lr0 * (10 ** lrf)
'momentum': 0.90, # SGD momentum
'weight_decay': 0.0005} # optimizer weight decay
# 0.0945 0.279 0.114 0.131 25 0.035 0.2 0.1 0.035 79 1.61 3.53 0.29 0.001 -4 0.9 0.0005 320 64-1
# 0.112 0.265 0.111 0.144 12.6 0.035 0.2 0.1 0.035 79 1.61 3.53 0.29 0.001 -4 0.9 0.0005 320 32-2
# hyp = {'giou': .035, # giou loss gain
# 'xy': 0.20, # xy loss gain
# 'wh': 0.10, # wh loss gain
# 'cls': 0.035, # cls loss gain
# 'cls_pw': 79.0, # cls BCELoss positive_weight
# 'conf': 1.61, # conf loss gain
# 'conf_pw': 3.53, # conf BCELoss positive_weight
# 'iou_t': 0.29, # iou target-anchor training threshold
# 'lr0': 0.001, # initial learning rate
# 'lrf': -4., # final learning rate = lr0 * (10 ** lrf)
# 'momentum': 0.90, # SGD momentum
# 'weight_decay': 0.0005} # optimizer weight decay
def train(
cfg,
data_cfg,
img_size=416,
epochs=100, # 500200 batches at bs 16, 117263 images = 273 epochs
batch_size=8,
accumulate=8, # effective bs = batch_size * accumulate = 8 * 8 = 64
freeze_backbone=False,
):
init_seeds()
weights = 'weights' + os.sep
latest = weights + 'latest.pt'
best = weights + 'best.pt'
device = torch_utils.select_device()
img_size_test = img_size # image size for testing
multi_scale = not opt.single_scale
if multi_scale:
img_size_min = round(img_size / 32 / 1.5)
img_size_max = round(img_size / 32 * 1.5)
img_size = img_size_max * 32 # initiate with maximum multi_scale size
# Configure run
data_dict = parse_data_cfg(data_cfg)
train_path = data_dict['train']
nc = int(data_dict['classes']) # number of classes
# Initialize model
model = Darknet(cfg).to(device)
# Optimizer
optimizer = optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay'])
cutoff = -1 # backbone reaches to cutoff layer
start_epoch = 0
best_fitness = 0.0
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
if opt.resume or opt.transfer: # Load previously saved model
if opt.transfer: # Transfer learning
chkpt = torch.load(weights + 'yolov3-spp.pt', map_location=device)
model.load_state_dict({k: v for k, v in chkpt['model'].items() if v.numel() > 1 and v.shape[0] != 255},
strict=False)
for p in model.parameters():
p.requires_grad = True if p.shape[0] == nf else False
else: # resume from latest.pt
chkpt = torch.load(latest, map_location=device) # load checkpoint
model.load_state_dict(chkpt['model'])
start_epoch = chkpt['epoch'] + 1
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']
del chkpt
else: # Initialize model with backbone (optional)
if '-tiny.cfg' in cfg:
cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
else:
cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
# Remove old results
for f in glob.glob('*_batch*.jpg') + glob.glob('results.txt'):
os.remove(f)
# Scheduler https://github.com/ultralytics/yolov3/issues/238
# lf = lambda x: 1 - x / epochs # linear ramp to zero
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
# scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in (0.8, 0.9)], gamma=0.1)
scheduler.last_epoch = start_epoch - 1
# # Plot lr schedule
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
# plt.plot(y, label='LambdaLR')
# plt.xlabel('epoch')
# plt.ylabel('LR')
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
# Dataset
rectangular_training = False
dataset = LoadImagesAndLabels(train_path,
img_size,
batch_size,
augment=True,
rect=rectangular_training)
# Initialize distributed training
if torch.cuda.device_count() > 1:
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:9999', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model)
# sampler = torch.utils.data.distributed.DistributedSampler(dataset)
# Dataloader
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=opt.num_workers,
shuffle=not rectangular_training, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
# Mixed precision training https://github.com/NVIDIA/apex
mixed_precision = True
if mixed_precision:
try:
from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
except: # not installed: install help: https://github.com/NVIDIA/apex/issues/259
mixed_precision = False
# Start training
model.hyp = hyp # attach hyperparameters to model
# model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
model_info(model, report='summary') # 'full' or 'summary'
nb = len(dataloader)
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0) # P, R, mAP, F1, test_loss
n_burnin = min(round(nb / 5 + 1), 1000) # burn-in batches
t, t0 = time.time(), time.time()
for epoch in range(start_epoch, epochs):
model.train()
print(('\n%8s%12s' + '%10s' * 7) %
('Epoch', 'Batch', 'xy', 'wh', 'conf', 'cls', 'total', 'targets', 'img_size'))
# Update scheduler
scheduler.step()
# Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
# # Update image weights (optional)
# w = model.class_weights.cpu().numpy() * (1 - maps) # class weights
# image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
# dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # random weighted index
mloss = torch.zeros(5).to(device) # mean losses
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
for i, (imgs, targets, _, _) in pbar:
imgs = imgs.to(device)
targets = targets.to(device)
# Multi-Scale training TODO: short-side to 32-multiple https://github.com/ultralytics/yolov3/issues/358
if multi_scale:
if (i + nb * epoch) / accumulate % 10 == 0: #  adjust (67% - 150%) every 10 batches
img_size = random.choice(range(img_size_min, img_size_max + 1)) * 32
# print('img_size = %g' % img_size)
scale_factor = img_size / max(imgs.shape[-2:])
imgs = F.interpolate(imgs, scale_factor=scale_factor, mode='bilinear', align_corners=False)
# Plot images with bounding boxes
if epoch == 0 and i == 0:
plot_images(imgs=imgs, targets=targets, fname='train_batch%g.jpg' % i)
# SGD burn-in
if epoch == 0 and i <= n_burnin:
lr = hyp['lr0'] * (i / n_burnin) ** 4
for x in optimizer.param_groups:
x['lr'] = lr
# Run model
pred = model(imgs)
# Compute loss
loss, loss_items = compute_loss(pred, targets, model, giou_loss=opt.giou)
if torch.isnan(loss):
print('WARNING: nan loss detected, ending training')
return results
# Compute gradient
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# Accumulate gradient for x batches before optimizing
if (i + 1) % accumulate == 0 or (i + 1) == nb:
optimizer.step()
optimizer.zero_grad()
# Print batch results
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
# s = ('%8s%12s' + '%10.3g' * 7) % ('%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nb - 1), *mloss, len(targets), time.time() - t)
s = ('%8s%12s' + '%10.3g' * 7) % (
'%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nb - 1), *mloss, len(targets), img_size)
t = time.time()
pbar.set_description(s) # print(s)
# Report time
dt = (time.time() - t0) / 3600
print('%g epochs completed in %.3f hours.' % (epoch - start_epoch + 1, dt))
# Calculate mAP (always test final epoch, skip first 5 if opt.nosave)
if not (opt.notest or (opt.nosave and epoch < 10)) or epoch == epochs - 1:
with torch.no_grad():
results, maps = test.test(cfg, data_cfg, batch_size=batch_size, img_size=img_size_test, model=model,
conf_thres=0.1)
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '%11.3g' * 5 % results + '\n') # P, R, mAP, F1, test_loss
# Update best map
fitness = results[2]
if fitness > best_fitness:
best_fitness = fitness
# Save training results
save = (not opt.nosave) or (epoch == epochs - 1)
if save:
# Create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': optimizer.state_dict()}
# Save latest checkpoint
torch.save(chkpt, latest)
# Save best checkpoint
if best_fitness == fitness:
torch.save(chkpt, best)
# Save backup every 10 epochs (optional)
if epoch > 0 and epoch % 10 == 0:
torch.save(chkpt, weights + 'backup%g.pt' % epoch)
# Delete checkpoint
del chkpt
return results
def print_mutation(hyp, results):
# Write mutation results
a = '%11s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
b = '%11.4g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%11.3g' * len(results) % results # results (P, R, mAP, F1, test_loss)
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
if opt.cloud_evolve:
os.system('gsutil cp gs://yolov4/evolve.txt .') # download evolve.txt
with open('evolve.txt', 'a') as f: # append result to evolve.txt
f.write(c + b + '\n')
os.system('gsutil cp evolve.txt gs://yolov4') # upload evolve.txt
else:
with open('evolve.txt', 'a') as f:
f.write(c + b + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
parser.add_argument('--batch-size', type=int, default=8, help='batch size')
parser.add_argument('--accumulate', type=int, default=8, help='number of batches to accumulate before optimizing')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data-cfg', type=str, default='data/coco_64img.data', help='coco.data file path')
parser.add_argument('--single-scale', action='store_true', help='train at fixed size (no multi-scale)')
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
parser.add_argument('--num-workers', type=int, default=4, help='number of Pytorch DataLoader workers')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--giou', action='store_true', help='use GIoU loss instead of xy, wh loss')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--cloud-evolve', action='store_true', help='evolve hyperparameters from a cloud source')
parser.add_argument('--var', default=0, type=int, help='debug variable')
opt = parser.parse_args()
print(opt)
opt.evolve = opt.cloud_evolve or opt.evolve
if opt.evolve:
opt.notest = True # only test final epoch
opt.nosave = True # only save final checkpoint
# Train
results = train(opt.cfg,
opt.data_cfg,
img_size=opt.img_size,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulate=opt.accumulate)
# Evolve hyperparameters (optional)
if opt.evolve:
gen = 1000 # generations to evolve
print_mutation(hyp, results) # Write mutation results
for _ in range(gen):
# Get best hyperparamters
x = np.loadtxt('evolve.txt', ndmin=2)
x = x[x[:, 2].argmax()] # select best mAP as genetic fitness (col 2)
for i, k in enumerate(hyp.keys()):
hyp[k] = x[i + 5]
# Mutate
init_seeds(seed=int(time.time()))
s = [.2, .2, .2, .2, .2, .2, .2, .2, .2 * 0, .2 * 0, .05 * 0, .2 * 0] # fractional sigmas
for i, k in enumerate(hyp.keys()):
x = (np.random.randn(1) * s[i] + 1) ** 2.0 # plt.hist(x.ravel(), 300)
hyp[k] *= float(x) # vary by 20% 1sigma
# Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay']
limits = [(1e-4, 1e-2), (0, 0.70), (0.70, 0.98), (0, 0.01)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
# Train mutation
results = train(opt.cfg,
opt.data_cfg,
img_size=opt.img_size,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulate=opt.accumulate)
# Write mutation results
print_mutation(hyp, results)
# # Plot results
# import numpy as np
# import matplotlib.pyplot as plt
# a = np.loadtxt('evolve_1000val.txt')
# x = a[:, 2] * a[:, 3] # metric = mAP * F1
# weights = (x - x.min()) ** 2
# fig = plt.figure(figsize=(14, 7))
# for i in range(len(hyp)):
# y = a[:, i + 5]
# mu = (y * weights).sum() / weights.sum()
# plt.subplot(2, 5, i+1)
# plt.plot(x.max(), mu, 'o')
# plt.plot(x, y, '.')
# print(list(hyp.keys())[i],'%.4g' % mu)