car-detection-bayes/detect.py

141 lines
4.9 KiB
Python

import argparse
import time
from sys import platform
from models import *
from utils.datasets import *
from utils.utils import *
def detect(
cfg,
data_cfg,
weights,
images,
output='output', # output folder
img_size=416,
conf_thres=0.5,
nms_thres=0.5,
save_txt=False,
save_images=True,
webcam=False
):
device = torch_utils.select_device()
if os.path.exists(output):
shutil.rmtree(output) # delete output folder
os.makedirs(output) # make new output folder
# Initialize model
if ONNX_EXPORT:
s = (416, 416) # onnx model image size
model = Darknet(cfg, s)
else:
model = Darknet(cfg, img_size)
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else: # darknet format
_ = load_darknet_weights(model, weights)
# Fuse Conv2d + BatchNorm2d layers
model.fuse()
# Eval mode
model.to(device).eval()
if ONNX_EXPORT:
img = torch.zeros((1, 3, s[0], s[1]))
torch.onnx.export(model, img, 'weights/export.onnx', verbose=True)
return
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
save_images = False
dataloader = LoadWebcam(img_size=img_size)
else:
dataloader = LoadImages(images, img_size=img_size)
# Get classes and colors
classes = load_classes(parse_data_cfg(data_cfg)['names'])
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))]
for i, (path, img, im0, vid_cap) in enumerate(dataloader):
t = time.time()
save_path = str(Path(output) / Path(path).name)
# Get detections
img = torch.from_numpy(img).unsqueeze(0).to(device)
pred, _ = model(img)
det = non_max_suppression(pred, conf_thres, nms_thres)[0]
if det is not None and len(det) > 0:
# Rescale boxes from 416 to true image size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results to screen
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum()
print('%g %ss' % (n, classes[int(c)]), end=', ')
# Draw bounding boxes and labels of detections
for *xyxy, conf, cls_conf, cls in det:
if save_txt: # Write to file
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
# Add bbox to the image
label = '%s %.2f' % (classes[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
print('Done. (%.3fs)' % (time.time() - t))
if webcam: # Show live webcam
cv2.imshow(weights, im0)
if save_images: # Save image with detections
if dataloader.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
codec = int(vid_cap.get(cv2.CAP_PROP_FOURCC))
fps = vid_cap.get(cv2.CAP_PROP_FPS)
width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, codec, fps, (width, height))
vid_writer.write(im0)
if save_images:
print('Results saved to %s' % os.getcwd() + os.sep + output)
if platform == 'darwin': # macos
os.system('open ' + output + ' ' + save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data-cfg', type=str, default='data/coco.data', help='coco.data file path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp.weights', help='path to weights file')
parser.add_argument('--images', type=str, default='data/samples', help='path to images')
parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension')
parser.add_argument('--conf-thres', type=float, default=0.5, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
detect(
opt.cfg,
opt.data_cfg,
opt.weights,
opt.images,
img_size=opt.img_size,
conf_thres=opt.conf_thres,
nms_thres=opt.nms_thres
)