car-detection-bayes/models.py

433 lines
20 KiB
Python
Executable File
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from utils.google_utils import *
from utils.layers import *
from utils.parse_config import *
ONNX_EXPORT = False
def create_modules(module_defs, img_size):
# Constructs module list of layer blocks from module configuration in module_defs
img_size = [img_size] * 2 if isinstance(img_size, int) else img_size # expand if necessary
_ = module_defs.pop(0) # cfg training hyperparams (unused)
output_filters = [3] # input channels
module_list = nn.ModuleList()
routs = [] # list of layers which rout to deeper layers
yolo_index = -1
for i, mdef in enumerate(module_defs):
modules = nn.Sequential()
if mdef['type'] == 'convolutional':
bn = mdef['batch_normalize']
filters = mdef['filters']
size = mdef['size']
stride = mdef['stride'] if 'stride' in mdef else (mdef['stride_y'], mdef['stride_x'])
if isinstance(size, int): # single-size conv
modules.add_module('Conv2d', nn.Conv2d(in_channels=output_filters[-1],
out_channels=filters,
kernel_size=size,
stride=stride,
padding=(size - 1) // 2 if mdef['pad'] else 0,
groups=mdef['groups'] if 'groups' in mdef else 1,
bias=not bn))
else: # multiple-size conv
modules.add_module('MixConv2d', MixConv2d(in_ch=output_filters[-1],
out_ch=filters,
k=size,
stride=stride,
bias=not bn))
if bn:
modules.add_module('BatchNorm2d', nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4))
else:
routs.append(i) # detection output (goes into yolo layer)
if mdef['activation'] == 'leaky': # activation study https://github.com/ultralytics/yolov3/issues/441
modules.add_module('activation', nn.LeakyReLU(0.1, inplace=True))
# modules.add_module('activation', nn.PReLU(num_parameters=1, init=0.10))
elif mdef['activation'] == 'swish':
modules.add_module('activation', Swish())
elif mdef['type'] == 'BatchNorm2d':
filters = output_filters[-1]
modules = nn.BatchNorm2d(filters, momentum=0.03, eps=1E-4)
elif mdef['type'] == 'maxpool':
size = mdef['size']
stride = mdef['stride']
maxpool = nn.MaxPool2d(kernel_size=size, stride=stride, padding=(size - 1) // 2)
if size == 2 and stride == 1: # yolov3-tiny
modules.add_module('ZeroPad2d', nn.ZeroPad2d((0, 1, 0, 1)))
modules.add_module('MaxPool2d', maxpool)
else:
modules = maxpool
elif mdef['type'] == 'upsample':
if ONNX_EXPORT: # explicitly state size, avoid scale_factor
g = (yolo_index + 1) * 2 / 32 # gain
modules = nn.Upsample(size=tuple(int(x * g) for x in img_size)) # img_size = (320, 192)
else:
modules = nn.Upsample(scale_factor=mdef['stride'])
elif mdef['type'] == 'route': # nn.Sequential() placeholder for 'route' layer
layers = mdef['layers']
filters = sum([output_filters[l + 1 if l > 0 else l] for l in layers])
routs.extend([i + l if l < 0 else l for l in layers])
elif mdef['type'] == 'shortcut': # nn.Sequential() placeholder for 'shortcut' layer
layers = mdef['from']
filters = output_filters[-1]
routs.extend([i + l if l < 0 else l for l in layers])
modules = WeightedFeatureFusion(layers=layers, weight='weights_type' in mdef)
elif mdef['type'] == 'reorg3d': # yolov3-spp-pan-scale
pass
elif mdef['type'] == 'yolo':
yolo_index += 1
stride = [32, 16, 8, 4, 2][yolo_index] # P3-P7 stride
layers = mdef['from'] if 'from' in mdef else []
modules = YOLOLayer(anchors=mdef['anchors'][mdef['mask']], # anchor list
nc=mdef['classes'], # number of classes
img_size=img_size, # (416, 416)
yolo_index=yolo_index, # 0, 1, 2...
layers=layers, # output layers
stride=stride)
# Initialize preceding Conv2d() bias (https://arxiv.org/pdf/1708.02002.pdf section 3.3)
try:
bo = -4.5 #  obj bias
bc = math.log(1 / (modules.nc - 0.99)) # cls bias: class probability is sigmoid(p) = 1/nc
j = layers[yolo_index] if 'from' in mdef else -1
bias_ = module_list[j][0].bias # shape(255,)
bias = bias_[:modules.no * modules.na].view(modules.na, -1) # shape(3,85)
bias[:, 4] += bo - bias[:, 4].mean() # obj
bias[:, 5:] += bc - bias[:, 5:].mean() # cls, view with utils.print_model_biases(model)
module_list[j][0].bias = torch.nn.Parameter(bias_, requires_grad=bias_.requires_grad)
except:
print('WARNING: smart bias initialization failure.')
else:
print('Warning: Unrecognized Layer Type: ' + mdef['type'])
# Register module list and number of output filters
module_list.append(modules)
output_filters.append(filters)
routs_binary = [False] * (i + 1)
for i in routs:
routs_binary[i] = True
return module_list, routs_binary
class YOLOLayer(nn.Module):
def __init__(self, anchors, nc, img_size, yolo_index, layers, stride):
super(YOLOLayer, self).__init__()
self.anchors = torch.Tensor(anchors)
self.index = yolo_index # index of this layer in layers
self.layers = layers # model output layer indices
self.stride = stride # layer stride
self.nl = len(layers) # number of output layers (3)
self.na = len(anchors) # number of anchors (3)
self.nc = nc # number of classes (80)
self.no = nc + 5 # number of outputs (85)
self.nx, self.ny = 0, 0 # initialize number of x, y gridpoints
self.anchor_vec = self.anchors / self.stride
self.anchor_wh = self.anchor_vec.view(1, self.na, 1, 1, 2)
if ONNX_EXPORT:
self.create_grids((img_size[1] // stride, img_size[0] // stride)) # number x, y grid points
def create_grids(self, ng=(13, 13), device='cpu'):
self.nx, self.ny = ng # x and y grid size
self.ng = torch.Tensor(ng).to(device)
# build xy offsets
if not self.training:
yv, xv = torch.meshgrid([torch.arange(self.ny, device=device), torch.arange(self.nx, device=device)])
self.grid = torch.stack((xv, yv), 2).view((1, 1, self.ny, self.nx, 2)).float()
if self.anchor_vec.device != device:
self.anchor_vec = self.anchor_vec.to(device)
self.anchor_wh = self.anchor_wh.to(device)
def forward(self, p, img_size, out):
ASFF = False # https://arxiv.org/abs/1911.09516
if ASFF:
i, n = self.index, self.nl # index in layers, number of layers
p = out[self.layers[i]]
bs, _, ny, nx = p.shape # bs, 255, 13, 13
if (self.nx, self.ny) != (nx, ny):
self.create_grids((nx, ny), p.device)
# outputs and weights
# w = F.softmax(p[:, -n:], 1) # normalized weights
w = torch.sigmoid(p[:, -n:]) * (2 / n) # sigmoid weights (faster)
# w = w / w.sum(1).unsqueeze(1) # normalize across layer dimension
# weighted ASFF sum
p = out[self.layers[i]][:, :-n] * w[:, i:i + 1]
for j in range(n):
if j != i:
p += w[:, j:j + 1] * \
F.interpolate(out[self.layers[j]][:, :-n], size=[ny, nx], mode='bilinear', align_corners=False)
elif ONNX_EXPORT:
bs = 1 # batch size
else:
bs, _, ny, nx = p.shape # bs, 255, 13, 13
if (self.nx, self.ny) != (nx, ny):
self.create_grids((nx, ny), p.device)
# p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 85) # (bs, anchors, grid, grid, classes + xywh)
p = p.view(bs, self.na, self.no, self.ny, self.nx).permute(0, 1, 3, 4, 2).contiguous() # prediction
if self.training:
return p
elif ONNX_EXPORT:
# Avoid broadcasting for ANE operations
m = self.na * self.nx * self.ny
ng = 1 / self.ng.repeat((m, 1))
grid = self.grid.repeat((1, self.na, 1, 1, 1)).view(m, 2)
anchor_wh = self.anchor_wh.repeat((1, 1, self.nx, self.ny, 1)).view(m, 2) * ng
p = p.view(m, self.no)
xy = torch.sigmoid(p[:, 0:2]) + grid # x, y
wh = torch.exp(p[:, 2:4]) * anchor_wh # width, height
p_cls = torch.sigmoid(p[:, 4:5]) if self.nc == 1 else \
torch.sigmoid(p[:, 5:self.no]) * torch.sigmoid(p[:, 4:5]) # conf
return p_cls, xy * ng, wh
else: # inference
io = p.clone() # inference output
io[..., :2] = torch.sigmoid(io[..., :2]) + self.grid # xy
io[..., 2:4] = torch.exp(io[..., 2:4]) * self.anchor_wh # wh yolo method
io[..., :4] *= self.stride
torch.sigmoid_(io[..., 4:])
return io.view(bs, -1, self.no), p # view [1, 3, 13, 13, 85] as [1, 507, 85]
class Darknet(nn.Module):
# YOLOv3 object detection model
def __init__(self, cfg, img_size=(416, 416)):
super(Darknet, self).__init__()
self.module_defs = parse_model_cfg(cfg)
self.module_list, self.routs = create_modules(self.module_defs, img_size)
self.yolo_layers = get_yolo_layers(self)
# Darknet Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version = np.array([0, 2, 5], dtype=np.int32) # (int32) version info: major, minor, revision
self.seen = np.array([0], dtype=np.int64) # (int64) number of images seen during training
self.info() # print model description
def forward(self, x, verbose=False):
img_size = x.shape[-2:]
yolo_out, out = [], []
if verbose:
str = ''
print('0', x.shape)
for i, (mdef, module) in enumerate(zip(self.module_defs, self.module_list)):
mtype = mdef['type']
if mtype in ['convolutional', 'upsample', 'maxpool']:
x = module(x)
elif mtype == 'shortcut': # sum
if verbose:
l = [i - 1] + module.layers # layers
s = [list(x.shape)] + [list(out[i].shape) for i in module.layers] # shapes
str = ' >> ' + ' + '.join(['layer %g %s' % x for x in zip(l, s)])
x = module(x, out) # WeightedFeatureFusion()
elif mtype == 'route': # concat
layers = mdef['layers']
if verbose:
l = [i - 1] + layers # layers
s = [list(x.shape)] + [list(out[i].shape) for i in layers] # shapes
str = ' >> ' + ' + '.join(['layer %g %s' % x for x in zip(l, s)])
if len(layers) == 1:
x = out[layers[0]]
else:
try:
x = torch.cat([out[i] for i in layers], 1)
except: # apply stride 2 for darknet reorg layer
out[layers[1]] = F.interpolate(out[layers[1]], scale_factor=[0.5, 0.5])
x = torch.cat([out[i] for i in layers], 1)
# print(''), [print(out[i].shape) for i in layers], print(x.shape)
elif mtype == 'yolo':
yolo_out.append(module(x, img_size, out))
out.append(x if self.routs[i] else [])
if verbose:
print('%g/%g %s -' % (i, len(self.module_list), mtype), list(x.shape), str)
str = ''
if self.training: # train
return yolo_out
elif ONNX_EXPORT: # export
x = [torch.cat(x, 0) for x in zip(*yolo_out)]
return x[0], torch.cat(x[1:3], 1) # scores, boxes: 3780x80, 3780x4
else: # test
io, p = zip(*yolo_out) # inference output, training output
return torch.cat(io, 1), p
def fuse(self):
# Fuse Conv2d + BatchNorm2d layers throughout model
print('Fusing layers...')
fused_list = nn.ModuleList()
for a in list(self.children())[0]:
if isinstance(a, nn.Sequential):
for i, b in enumerate(a):
if isinstance(b, nn.modules.batchnorm.BatchNorm2d):
# fuse this bn layer with the previous conv2d layer
conv = a[i - 1]
fused = torch_utils.fuse_conv_and_bn(conv, b)
a = nn.Sequential(fused, *list(a.children())[i + 1:])
break
fused_list.append(a)
self.module_list = fused_list
self.info() # yolov3-spp reduced from 225 to 152 layers
def info(self, verbose=False):
torch_utils.model_info(self, verbose)
def get_yolo_layers(model):
return [i for i, x in enumerate(model.module_defs) if x['type'] == 'yolo'] # [82, 94, 106] for yolov3
def load_darknet_weights(self, weights, cutoff=-1):
# Parses and loads the weights stored in 'weights'
# Establish cutoffs (load layers between 0 and cutoff. if cutoff = -1 all are loaded)
file = Path(weights).name
if file == 'darknet53.conv.74':
cutoff = 75
elif file == 'yolov3-tiny.conv.15':
cutoff = 15
# Read weights file
with open(weights, 'rb') as f:
# Read Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version = np.fromfile(f, dtype=np.int32, count=3) # (int32) version info: major, minor, revision
self.seen = np.fromfile(f, dtype=np.int64, count=1) # (int64) number of images seen during training
weights = np.fromfile(f, dtype=np.float32) # the rest are weights
ptr = 0
for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
if mdef['type'] == 'convolutional':
conv = module[0]
if mdef['batch_normalize']:
# Load BN bias, weights, running mean and running variance
bn = module[1]
nb = bn.bias.numel() # number of biases
# Bias
bn.bias.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.bias))
ptr += nb
# Weight
bn.weight.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.weight))
ptr += nb
# Running Mean
bn.running_mean.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.running_mean))
ptr += nb
# Running Var
bn.running_var.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.running_var))
ptr += nb
else:
# Load conv. bias
nb = conv.bias.numel()
conv_b = torch.from_numpy(weights[ptr:ptr + nb]).view_as(conv.bias)
conv.bias.data.copy_(conv_b)
ptr += nb
# Load conv. weights
nw = conv.weight.numel() # number of weights
conv.weight.data.copy_(torch.from_numpy(weights[ptr:ptr + nw]).view_as(conv.weight))
ptr += nw
def save_weights(self, path='model.weights', cutoff=-1):
# Converts a PyTorch model to Darket format (*.pt to *.weights)
# Note: Does not work if model.fuse() is applied
with open(path, 'wb') as f:
# Write Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
self.version.tofile(f) # (int32) version info: major, minor, revision
self.seen.tofile(f) # (int64) number of images seen during training
# Iterate through layers
for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
if mdef['type'] == 'convolutional':
conv_layer = module[0]
# If batch norm, load bn first
if mdef['batch_normalize']:
bn_layer = module[1]
bn_layer.bias.data.cpu().numpy().tofile(f)
bn_layer.weight.data.cpu().numpy().tofile(f)
bn_layer.running_mean.data.cpu().numpy().tofile(f)
bn_layer.running_var.data.cpu().numpy().tofile(f)
# Load conv bias
else:
conv_layer.bias.data.cpu().numpy().tofile(f)
# Load conv weights
conv_layer.weight.data.cpu().numpy().tofile(f)
def convert(cfg='cfg/yolov3-spp.cfg', weights='weights/yolov3-spp.weights'):
# Converts between PyTorch and Darknet format per extension (i.e. *.weights convert to *.pt and vice versa)
# from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')
# Initialize model
model = Darknet(cfg)
# Load weights and save
if weights.endswith('.pt'): # if PyTorch format
model.load_state_dict(torch.load(weights, map_location='cpu')['model'])
save_weights(model, path='converted.weights', cutoff=-1)
print("Success: converted '%s' to 'converted.weights'" % weights)
elif weights.endswith('.weights'): # darknet format
_ = load_darknet_weights(model, weights)
chkpt = {'epoch': -1,
'best_fitness': None,
'training_results': None,
'model': model.state_dict(),
'optimizer': None}
torch.save(chkpt, 'converted.pt')
print("Success: converted '%s' to 'converted.pt'" % weights)
else:
print('Error: extension not supported.')
def attempt_download(weights):
# Attempt to download pretrained weights if not found locally
msg = weights + ' missing, try downloading from https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0'
if weights and not os.path.isfile(weights):
d = {'yolov3-spp.weights': '16lYS4bcIdM2HdmyJBVDOvt3Trx6N3W2R',
'yolov3.weights': '1uTlyDWlnaqXcsKOktP5aH_zRDbfcDp-y',
'yolov3-tiny.weights': '1CCF-iNIIkYesIDzaPvdwlcf7H9zSsKZQ',
'yolov3-spp.pt': '1f6Ovy3BSq2wYq4UfvFUpxJFNDFfrIDcR',
'yolov3.pt': '1SHNFyoe5Ni8DajDNEqgB2oVKBb_NoEad',
'yolov3-tiny.pt': '10m_3MlpQwRtZetQxtksm9jqHrPTHZ6vo',
'darknet53.conv.74': '1WUVBid-XuoUBmvzBVUCBl_ELrzqwA8dJ',
'yolov3-tiny.conv.15': '1Bw0kCpplxUqyRYAJr9RY9SGnOJbo9nEj',
'yolov3-spp-ultralytics.pt': '1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4'}
file = Path(weights).name
if file in d:
r = gdrive_download(id=d[file], name=weights)
else: # download from pjreddie.com
url = 'https://pjreddie.com/media/files/' + file
print('Downloading ' + url)
r = os.system('curl -f ' + url + ' -o ' + weights)
# Error check
if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
os.system('rm ' + weights) # remove partial downloads
raise Exception(msg)