Go to file
Glenn Jocher 981abf679c updates 2019-07-29 12:05:50 +02:00
.github/ISSUE_TEMPLATE Update issue templates 2019-03-25 15:27:09 +01:00
cfg updates 2019-07-29 12:05:50 +02:00
data updates 2019-07-10 17:34:19 +02:00
utils updates 2019-07-26 23:55:11 +02:00
weights updates 2019-04-23 18:53:36 +02:00
.gitignore updates 2019-07-01 01:27:32 +02:00
LICENSE Initial commit 2018-08-26 10:51:39 +02:00
README.md Update README.md 2019-07-28 15:57:01 +02:00
detect.py updates 2019-07-20 15:10:31 +02:00
examples.ipynb updates 2019-07-25 13:37:01 +02:00
models.py Merge remote-tracking branch 'origin/master' 2019-07-29 00:45:37 +02:00
requirements.txt updates 2019-07-25 13:37:01 +02:00
test.py updates 2019-07-21 21:28:38 +02:00
train.py updates 2019-07-26 23:52:13 +02:00

README.md

Introduction

This directory contains PyTorch YOLOv3 software and an iOS App developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.

Description

The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. Credit to Joseph Redmon for YOLO: https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.7 or later with the following pip3 install -U -r requirements.txt packages:

  • numpy
  • torch >= 1.1.0
  • opencv-python
  • tqdm

Tutorials

Jupyter Notebook

Our Jupyter notebook provides quick training, inference and testing examples.

Training

Start Training: python3 train.py to begin training after downloading COCO data with data/get_coco_dataset.sh.

Resume Training: python3 train.py --resume to resume training from weights/last.pt.

Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set. Default training settings produce loss plots below, with training speed of 0.25 s/batch on a V100 GPU (almost 50 COCO epochs/day).

Here we see training results from coco_1img.data, coco_10img.data and coco_100img.data, 3 example files available in the data/ folder, which train and test on the first 1, 10 and 100 images of the coco2014 trainval dataset.

from utils import utils; utils.plot_results() results

Image Augmentation

datasets.py applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied only during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.

Augmentation Description
Translation +/- 10% (vertical and horizontal)
Rotation +/- 5 degrees
Shear +/- 2 degrees (vertical and horizontal)
Scale +/- 10%
Reflection 50% probability (horizontal-only)
HSV Saturation +/- 50%
HSV Intensity +/- 50%

Speed

https://cloud.google.com/deep-learning-vm/
Machine type: n1-standard-8 (8 vCPUs, 30 GB memory)
CPU platform: Intel Skylake
GPUs: K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.80/hr) CUDA with Nvidia Apex FP16/32 HDD: 100 GB SSD
Dataset: COCO train 2014 (117,263 images)

GPUs batch_size batch time epoch time epoch cost
1 K80 64 (32x2) 2.9s 175min $0.58
1 T4 64 (32x2) 0.80s 49min $0.29
2 T4 64 (64x1) 0.52s 32min $0.36
1 2080ti 64 (32x2) - - -
1 V100 64 (32x2) 0.38s 23min $0.31
2 V100 64 (64x1) 0.30s 18min $0.46

Inference

detect.py runs inference on all images and videos in the data/samples folder:

YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights weights/yolov3.weights

YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.weights

YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights weights/yolov3-spp.weights

Webcam

detect.py with webcam=True shows a live webcam feed.

Pretrained Weights

Darknet Conversion

git clone https://github.com/ultralytics/yolov3 && cd yolov3

# convert darknet cfg/weights to pytorch model
python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'

# convert cfg/pytorch model to darknet weights
python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'

mAP

  • test.py --weights weights/yolov3.weights tests official YOLOv3 weights.
  • test.py --weights weights/last.pt tests most recent checkpoint.
  • test.py --weights weights/best.pt tests best checkpoint.
  • Compare to darknet published results https://arxiv.org/abs/1804.02767.
ultralytics/yolov3 darknet
YOLOv3 320 51.8 51.5
YOLOv3 416 55.4 55.3
YOLOv3 608 58.2 57.9
YOLOv3-spp 320 52.4 -
YOLOv3-spp 416 56.5 -
YOLOv3-spp 608 60.7 60.6
# install pycocotools
git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
cd yolov3

python3 test.py --save-json --img-size 608
Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15079MB)
                Class    Images   Targets         P         R       mAP        F1: 100% 313/313 [07:40<00:00,  2.34s/it]
                all       5e+03  3.58e+04     0.117     0.788     0.595     0.199
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.367
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.607 <--
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.387
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.208
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.392
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.487
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.465
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.495
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.332
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.518
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.621

python3 test.py --save-json --img-size 416
Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15079MB)
                Class    Images   Targets         P         R       mAP        F1: 100% 313/313 [07:01<00:00,  1.41s/it]
                all       5e+03  3.58e+04     0.105     0.746     0.554      0.18
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.336
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.565 <--
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.350
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.151
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.361
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.494
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.281
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.459
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.256
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.495
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.622

Citation

DOI

Contact

Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.