car-detection-bayes/train.py

510 lines
23 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import test # import test.py to get mAP after each epoch
from models import *
from utils.datasets import *
from utils.utils import *
mixed_precision = True
try: # Mixed precision training https://github.com/NVIDIA/apex
from apex import amp
except:
mixed_precision = False # not installed
wdir = 'weights' + os.sep # weights dir
last = wdir + 'last.pt'
best = wdir + 'best.pt'
results_file = 'results.txt'
# Hyperparameters (results68: 59.2 mAP@0.5 yolov3-spp-416) https://github.com/ultralytics/yolov3/issues/310
hyp = {'giou': 3.31, # giou loss gain
'cls': 42.4, # cls loss gain
'cls_pw': 1.0, # cls BCELoss positive_weight
'obj': 52.0, # obj loss gain (*=img_size/416 if img_size != 416)
'obj_pw': 1.0, # obj BCELoss positive_weight
'iou_t': 0.213, # iou training threshold
'lr0': 0.00261, # initial learning rate (SGD=1E-3, Adam=9E-5)
'lrf': -4., # final LambdaLR learning rate = lr0 * (10 ** lrf)
'momentum': 0.949, # SGD momentum
'weight_decay': 0.000489, # optimizer weight decay
'fl_gamma': 0.5, # focal loss gamma
'hsv_h': 0.0103, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.691, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.433, # image HSV-Value augmentation (fraction)
'degrees': 1.43, # image rotation (+/- deg)
'translate': 0.0663, # image translation (+/- fraction)
'scale': 0.11, # image scale (+/- gain)
'shear': 0.384} # image shear (+/- deg)
# Overwrite hyp with hyp*.txt (optional)
f = glob.glob('hyp*.txt')
if f:
print('Using %s' % f[0])
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
hyp[k] = v
def train():
cfg = opt.cfg
data = opt.data
img_size = opt.img_size
epochs = 1 if opt.prebias else opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
batch_size = opt.batch_size
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
weights = opt.weights # initial training weights
if 'pw' not in opt.arc: # remove BCELoss positive weights
hyp['cls_pw'] = 1.
hyp['obj_pw'] = 1.
# Initialize
init_seeds()
if opt.multi_scale:
img_sz_min = round(img_size / 32 / 1.5)
img_sz_max = round(img_size / 32 * 1.5)
img_size = img_sz_max * 32 # initiate with maximum multi_scale size
print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))
# Configure run
data_dict = parse_data_cfg(data)
train_path = data_dict['train']
nc = int(data_dict['classes']) # number of classes
names = load_classes(data_dict['names'])
test_path = data_dict['valid'] # path to test images
# Remove previous results
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
os.remove(f)
# Initialize model
model = Darknet(cfg, arc=opt.arc).to(device)
# Optimizer
pg0, pg1 = [], [] # optimizer parameter groups
for k, v in dict(model.named_parameters()).items():
if 'Conv2d.weight' in k:
pg1 += [v] # parameter group 1 (apply weight_decay)
else:
pg0 += [v] # parameter group 0
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'])
# optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
del pg0, pg1
# https://github.com/alphadl/lookahead.pytorch
# optimizer = torch_utils.Lookahead(optimizer, k=5, alpha=0.5)
cutoff = -1 # backbone reaches to cutoff layer
start_epoch = 0
best_fitness = float('inf')
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
# possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
chkpt = torch.load(weights, map_location=device)
# load model
try:
chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
model.load_state_dict(chkpt['model'], strict=False)
# model.load_state_dict(chkpt['model'])
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
"See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e
# load optimizer
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']
# load results
if chkpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(chkpt['training_results']) # write results.txt
start_epoch = chkpt['epoch'] + 1
del chkpt
elif len(weights) > 0: # darknet format
# possible weights are '*.weights', 'yolov3-tiny.conv.15', 'darknet53.conv.74' etc.
cutoff = load_darknet_weights(model, weights)
if opt.transfer or opt.prebias: # transfer learning edge (yolo) layers
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
if opt.prebias:
for p in optimizer.param_groups:
# lower param count allows more aggressive training settings: i.e. SGD ~0.1 lr0, ~0.9 momentum
p['lr'] *= 100 # lr gain
if p.get('momentum') is not None: # for SGD but not Adam
p['momentum'] *= 0.9
for p in model.parameters():
if opt.prebias and p.numel() == nf: # train (yolo biases)
p.requires_grad = True
elif opt.transfer and p.shape[0] == nf: # train (yolo biases+weights)
p.requires_grad = True
else: # freeze layer
p.requires_grad = False
# Scheduler https://github.com/ultralytics/yolov3/issues/238
# lf = lambda x: 1 - x / epochs # linear ramp to zero
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
# scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=range(59, 70, 1), gamma=0.8) # gradual fall to 0.1*lr0
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in [0.8, 0.9]], gamma=0.1)
scheduler.last_epoch = start_epoch - 1
# # Plot lr schedule
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
# plt.plot(y, label='LambdaLR')
# plt.xlabel('epoch')
# plt.ylabel('LR')
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
# Mixed precision training https://github.com/NVIDIA/apex
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
# Initialize distributed training
if device.type != 'cpu' and torch.cuda.device_count() > 1:
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:9999', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
model.yolo_layers = model.module.yolo_layers # move yolo layer indices to top level
# Dataset
dataset = LoadImagesAndLabels(train_path,
img_size,
batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=opt.rect, # rectangular training
image_weights=opt.img_weights,
cache_labels=True if epochs > 10 else False,
cache_images=False if opt.prebias else opt.cache_images)
dataset_test = LoadImagesAndLabels(test_path, img_size, batch_size)
# Dataloader
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 16]) # number of workers
print('Using %g dataloader workers' % nw)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=nw,
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
dataloader_test = DataLoader(dataset_test,
batch_size=batch_size,
num_workers=min([os.cpu_count(), batch_size if batch_size > 1 else 0, 16]),
pin_memory=True,
collate_fn=dataloader_test.collate_fn)
# Start training
model.nc = nc # attach number of classes to model
model.arc = opt.arc # attach yolo architecture
model.hyp = hyp # attach hyperparameters to model
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
torch_utils.model_info(model, report='summary') # 'full' or 'summary'
nb = len(dataloader)
maps = np.zeros(nc) # mAP per class
# torch.autograd.set_detect_anomaly(True)
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
t0 = time.time()
print('Starting %s for %g epochs...' % ('prebias' if opt.prebias else 'training', epochs))
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
# Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
freeze_backbone = False
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
# Update image weights (optional)
if dataset.image_weights:
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
mloss = torch.zeros(4).to(device) # mean losses
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device)
targets = targets.to(device)
# Multi-Scale training
if opt.multi_scale:
if ni / accumulate % 10 == 0: #  adjust (67% - 150%) every 10 batches
img_size = random.randrange(img_sz_min, img_sz_max + 1) * 32
sf = img_size / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / 32.) * 32 for x in imgs.shape[2:]] # new shape (stretched to 32-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Plot images with bounding boxes
if ni == 0:
fname = 'train_batch%g.jpg' % i
plot_images(imgs=imgs, targets=targets, paths=paths, fname=fname)
if tb_writer:
tb_writer.add_image(fname, cv2.imread(fname)[:, :, ::-1], dataformats='HWC')
# Hyperparameter burn-in
# n_burn = nb - 1 # min(nb // 5 + 1, 1000) # number of burn-in batches
# if ni <= n_burn:
# for m in model.named_modules():
# if m[0].endswith('BatchNorm2d'):
# m[1].momentum = 1 - i / n_burn * 0.99 # BatchNorm2d momentum falls from 1 - 0.01
# g = (i / n_burn) ** 4 # gain rises from 0 - 1
# for x in optimizer.param_groups:
# x['lr'] = hyp['lr0'] * g
# x['weight_decay'] = hyp['weight_decay'] * g
# Run model
pred = model(imgs)
# Compute loss
loss, loss_items = compute_loss(pred, targets, model)
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results
# Scale loss by nominal batch_size of 64
loss *= batch_size / 64
# Compute gradient
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# Accumulate gradient for x batches before optimizing
if ni % accumulate == 0:
optimizer.step()
optimizer.zero_grad()
# Print batch results
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s = ('%10s' * 2 + '%10.3g' * 6) % (
'%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, len(targets), img_size)
pbar.set_description(s)
# end batch ------------------------------------------------------------------------------------------------
# Update scheduler
scheduler.step()
# Process epoch results
final_epoch = epoch + 1 == epochs
if opt.prebias:
print_model_biases(model)
else:
# Calculate mAP (always test final epoch, skip first 10 if opt.nosave)
if not (opt.notest or (opt.nosave and epoch < 10)) or final_epoch:
with torch.no_grad():
results, maps = test.test(cfg,
data = None,
batch_size=batch_size,
img_size=opt.img_size,
model=model,
conf_thres=0.001 if final_epoch and epoch > 0 else 0.1, # 0.1 for speed
save_json=final_epoch and epoch > 0 and 'coco.data' in data,
names = names,
dataloader = dataloader_test)
# Write epoch results
with open(results_file, 'a') as f:
f.write(s + '%10.3g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
if len(opt.name) and opt.bucket and not opt.prebias:
os.system('gsutil cp results.txt gs://%s/results%s.txt' % (opt.bucket, opt.name))
# Write Tensorboard results
if tb_writer:
x = list(mloss) + list(results)
titles = ['GIoU', 'Objectness', 'Classification', 'Train loss',
'Precision', 'Recall', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification']
for xi, title in zip(x, titles):
tb_writer.add_scalar(title, xi, epoch)
# Update best mAP
fitness = sum(results[4:]) # total loss
if fitness < best_fitness:
best_fitness = fitness
# Save training results
save = (not opt.nosave) or (final_epoch and not opt.evolve) or opt.prebias
if save:
with open(results_file, 'r') as f:
# Create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last checkpoint
torch.save(chkpt, last)
# Save best checkpoint
if best_fitness == fitness:
torch.save(chkpt, best)
# Save backup every 10 epochs (optional)
if epoch > 0 and epoch % 10 == 0:
torch.save(chkpt, wdir + 'backup%g.pt' % epoch)
# Delete checkpoint
del chkpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if len(opt.name) and not opt.prebias:
fresults, flast, fbest = 'results%s.txt' % opt.name, 'last%s.pt' % opt.name, 'best%s.pt' % opt.name
os.rename('results.txt', fresults)
os.rename(wdir + 'last.pt', wdir + flast) if os.path.exists(wdir + 'last.pt') else None
os.rename(wdir + 'best.pt', wdir + fbest) if os.path.exists(wdir + 'best.pt') else None
# save to cloud
if opt.bucket:
os.system('gsutil cp %s %s gs://%s' % (fresults, wdir + flast, opt.bucket))
plot_results() # save as results.png
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
return results
def prebias():
# trains output bias layers for 1 epoch and creates new backbone
if opt.prebias:
a = opt.img_weights # save settings
opt.img_weights = False # disable settings
train() # transfer-learn yolo biases for 1 epoch
create_backbone(last) # saved results as backbone.pt
opt.weights = wdir + 'backbone.pt' # assign backbone
opt.prebias = False # disable prebias
opt.img_weights = a # reset settings
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=273) # 500200 batches at bs 16, 117263 images = 273 epochs
parser.add_argument('--batch-size', type=int, default=16) # effective bs = batch_size * accumulate = 16 * 4 = 64
parser.add_argument('--accumulate', type=int, default=4, help='batches to accumulate before optimizing')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='*.data file path')
parser.add_argument('--multi-scale', action='store_true', help='adjust (67% - 150%) img_size every 10 batches')
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
parser.add_argument('--transfer', action='store_true', help='transfer learning')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--img-weights', action='store_true', help='select training images by weight')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, default='weights/ultralytics49.pt', help='initial weights')
parser.add_argument('--arc', type=str, default='default', help='yolo architecture') # defaultpw, uCE, uBCE
parser.add_argument('--prebias', action='store_true', help='transfer-learn yolo biases prior to training')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1 or cpu)')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--var', type=float, help='debug variable')
opt = parser.parse_args()
opt.weights = last if opt.resume else opt.weights
print(opt)
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
if device.type == 'cpu':
mixed_precision = False
# scale hyp['obj'] by img_size (evolved at 416)
hyp['obj'] *= opt.img_size / 416.
tb_writer = None
if not opt.evolve: # Train normally
try:
# Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/
from torch.utils.tensorboard import SummaryWriter
tb_writer = SummaryWriter()
except:
pass
prebias() # optional
train() # train normally
else: # Evolve hyperparameters (optional)
opt.notest = True # only test final epoch
opt.nosave = True # only save final checkpoint
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
for _ in range(1): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
x = np.loadtxt('evolve.txt', ndmin=2)
parent = 'weighted' # parent selection method: 'single' or 'weighted'
if parent == 'single' or len(x) == 1:
x = x[fitness(x).argmax()]
elif parent == 'weighted': # weighted combination
n = min(10, x.shape[0]) # number to merge
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() # weights
x = (x[:n] * w.reshape(n, 1)).sum(0) / w.sum() # new parent
for i, k in enumerate(hyp.keys()):
hyp[k] = x[i + 7]
# Mutate
np.random.seed(int(time.time()))
s = [.2, .2, .2, .2, .2, .2, .2, .0, .02, .2, .2, .2, .2, .2, .2, .2, .2, .2] # sigmas
for i, k in enumerate(hyp.keys()):
x = (np.random.randn(1) * s[i] + 1) ** 2.0 # plt.hist(x.ravel(), 300)
hyp[k] *= float(x) # vary by sigmas
# Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
# Train mutation
prebias()
results = train()
# Write mutation results
print_mutation(hyp, results, opt.bucket)
# Plot results
# plot_evolution_results(hyp)