car-detection-bayes/utils/datasets.py

476 lines
19 KiB
Python
Executable File

import glob
import math
import os
import random
import shutil
from pathlib import Path
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
from tqdm import tqdm
from utils.utils import xyxy2xywh, xywh2xyxy
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif']
vid_formats = ['.mov', '.avi', '.mp4']
class LoadImages: # for inference
def __init__(self, path, img_size=416):
self.height = img_size
files = []
if os.path.isdir(path):
files = sorted(glob.glob('%s/*.*' % path))
elif os.path.isfile(path):
files = [path]
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
nI, nV = len(images), len(videos)
self.files = images + videos
self.nF = nI + nV # number of files
self.video_flag = [False] * nI + [True] * nV
self.mode = 'images'
if any(videos):
self.new_video(videos[0]) # new video
else:
self.cap = None
assert self.nF > 0, 'No images or videos found in ' + path
def __iter__(self):
self.count = 0
return self
def __next__(self):
if self.count == self.nF:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = 'video'
ret_val, img0 = self.cap.read()
if not ret_val:
self.count += 1
self.cap.release()
if self.count == self.nF: # last video
raise StopIteration
else:
path = self.files[self.count]
self.new_video(path)
ret_val, img0 = self.cap.read()
self.frame += 1
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='')
else:
# Read image
self.count += 1
img0 = cv2.imread(path) # BGR
assert img0 is not None, 'File Not Found ' + path
print('image %g/%g %s: ' % (self.count, self.nF, path), end='')
# Padded resize
img, *_ = letterbox(img0, new_shape=self.height)
# Normalize RGB
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
return path, img, img0, self.cap
def new_video(self, path):
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
def __len__(self):
return self.nF # number of files
class LoadWebcam: # for inference
def __init__(self, img_size=416):
self.cam = cv2.VideoCapture(0)
self.height = img_size
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if cv2.waitKey(1) == 27: # esc to quit
cv2.destroyAllWindows()
raise StopIteration
# Read image
ret_val, img0 = self.cam.read()
assert ret_val, 'Webcam Error'
img_path = 'webcam_%g.jpg' % self.count
img0 = cv2.flip(img0, 1) # flip left-right
print('webcam %g: ' % self.count, end='')
# Padded resize
img, *_ = letterbox(img0, new_shape=self.height)
# Normalize RGB
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return img_path, img, img0, None
def __len__(self):
return 0
class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=416, batch_size=16, augment=False, rect=True, image_weights=False):
with open(path, 'r') as f:
img_files = f.read().splitlines()
self.img_files = [x for x in img_files if os.path.splitext(x)[-1].lower() in img_formats]
n = len(self.img_files)
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
nb = bi[-1] + 1 # number of batches
assert n > 0, 'No images found in %s' % path
self.n = n
self.batch = bi # batch index of image
self.img_size = img_size
self.augment = augment
self.image_weights = image_weights
self.rect = False if image_weights else rect
# Define labels
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt')
for x in self.img_files]
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
if self.rect:
from PIL import Image
# Read image shapes
sp = 'data' + os.sep + path.replace('.txt', '.shapes').split(os.sep)[-1] # shapefile path
if os.path.exists(sp): # read existing shapefile
with open(sp, 'r') as f:
s = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
assert len(s) == n, 'Shapefile out of sync, please delete %s and rerun' % sp
else: # no shapefile, so read shape using PIL and write shapefile for next time (faster)
s = np.array([Image.open(f).size for f in tqdm(self.img_files, desc='Reading image shapes')])
np.savetxt(sp, s, fmt='%g')
# Sort by aspect ratio
ar = s[:, 1] / s[:, 0] # aspect ratio
i = ar.argsort()
self.img_files = [self.img_files[i] for i in i]
self.label_files = [self.label_files[i] for i in i]
ar = ar[i]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(np.array(shapes) * img_size / 32.).astype(np.int) * 32
# Preload labels (required for weighted CE training)
self.imgs = [None] * n
self.labels = [None] * n
preload_labels = False
if preload_labels:
self.labels = [np.zeros((0, 5))] * n
iter = tqdm(self.label_files, desc='Reading labels') if n > 10 else self.label_files
extract_bounding_boxes = False
for i, file in enumerate(iter):
try:
with open(file, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
self.labels[i] = l
# Extract object detection boxes for a second stage classifier
if extract_bounding_boxes:
p = Path(self.img_files[i])
img = cv2.imread(str(p))
h, w, _ = img.shape
for j, x in enumerate(l):
f = '%s%sclassification%s%g_%g_%s' % (
p.parent.parent, os.sep, os.sep, x[0], j, p.name)
if not os.path.exists(Path(f).parent):
os.makedirs(Path(f).parent) # make new output folder
box = xywh2xyxy(x[1:].reshape(-1, 4)).ravel()
box = np.clip(box, 0, 1) # clip boxes outside of image
result = cv2.imwrite(f, img[int(box[1] * h):int(box[3] * h),
int(box[0] * w):int(box[2] * w)])
if not result:
print('stop')
except:
pass # print('Warning: missing labels for %s' % self.img_files[i]) # missing label file
assert len(np.concatenate(self.labels, 0)) > 0, 'No labels found. Incorrect label paths provided.'
# Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3
detect_corrupted_images = False
if detect_corrupted_images:
from skimage import io # conda install -c conda-forge scikit-image
for file in tqdm(self.img_files, desc='Detecting corrupted images'):
try:
_ = io.imread(file)
except:
print('Corrupted image detected: %s' % file)
def __len__(self):
return len(self.img_files)
# def __iter__(self):
# self.count = -1
# print('ran dataset iter')
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
# return self
def __getitem__(self, index):
if self.image_weights:
index = self.indices[index]
img_path = self.img_files[index]
label_path = self.label_files[index]
# Load image
img = self.imgs[index]
if img is None:
img = cv2.imread(img_path) # BGR
assert img is not None, 'File Not Found ' + img_path
if self.n < 1001:
self.imgs[index] = img # cache image into memory
# Augment colorspace
augment_hsv = True
if self.augment and augment_hsv:
# SV augmentation by 50%
fraction = 0.50 # must be < 1.0
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val
S = img_hsv[:, :, 1].astype(np.float32) # saturation
V = img_hsv[:, :, 2].astype(np.float32) # value
a = (random.random() * 2 - 1) * fraction + 1
b = (random.random() * 2 - 1) * fraction + 1
S *= a
V *= b
img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255)
img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
# Letterbox
h, w, _ = img.shape
if self.rect:
shape = self.batch_shapes[self.batch[index]]
img, ratiow, ratioh, padw, padh = letterbox(img, new_shape=shape, mode='rect')
else:
shape = self.img_size
img, ratiow, ratioh, padw, padh = letterbox(img, new_shape=shape, mode='square')
# Load labels
labels = []
if os.path.isfile(label_path):
x = self.labels[index]
if x is None: # labels not preloaded
with open(label_path, 'r') as f:
x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
self.labels[index] = x # save for next time
if x.size > 0:
# Normalized xywh to pixel xyxy format
labels = x.copy()
labels[:, 1] = ratiow * w * (x[:, 1] - x[:, 3] / 2) + padw
labels[:, 2] = ratioh * h * (x[:, 2] - x[:, 4] / 2) + padh
labels[:, 3] = ratiow * w * (x[:, 1] + x[:, 3] / 2) + padw
labels[:, 4] = ratioh * h * (x[:, 2] + x[:, 4] / 2) + padh
# Augment image and labels
if self.augment:
img, labels = random_affine(img, labels, degrees=(-5, 5), translate=(0.10, 0.10), scale=(0.90, 1.10))
nL = len(labels) # number of labels
if nL:
# convert xyxy to xywh
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
# Normalize coordinates 0 - 1
labels[:, [2, 4]] /= img.shape[0] # height
labels[:, [1, 3]] /= img.shape[1] # width
if self.augment:
# random left-right flip
lr_flip = True
if lr_flip and random.random() > 0.5:
img = np.fliplr(img)
if nL:
labels[:, 1] = 1 - labels[:, 1]
# random up-down flip
ud_flip = False
if ud_flip and random.random() > 0.5:
img = np.flipud(img)
if nL:
labels[:, 2] = 1 - labels[:, 2]
labels_out = torch.zeros((nL, 6))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)
# Normalize
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return torch.from_numpy(img), labels_out, img_path, (h, w)
@staticmethod
def collate_fn(batch):
img, label, path, hw = list(zip(*batch)) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, hw
def letterbox(img, new_shape=416, color=(127.5, 127.5, 127.5), mode='auto'):
# Resize a rectangular image to a 32 pixel multiple rectangle
# https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
ratio = float(new_shape) / max(shape)
else:
ratio = max(new_shape) / max(shape) # ratio = new / old
ratiow, ratioh = ratio, ratio
new_unpad = (int(round(shape[1] * ratio)), int(round(shape[0] * ratio)))
# Compute padding https://github.com/ultralytics/yolov3/issues/232
if mode is 'auto': # minimum rectangle
dw = np.mod(new_shape - new_unpad[0], 32) / 2 # width padding
dh = np.mod(new_shape - new_unpad[1], 32) / 2 # height padding
elif mode is 'square': # square
dw = (new_shape - new_unpad[0]) / 2 # width padding
dh = (new_shape - new_unpad[1]) / 2 # height padding
elif mode is 'rect': # square
dw = (new_shape[1] - new_unpad[0]) / 2 # width padding
dh = (new_shape[0] - new_unpad[1]) / 2 # height padding
elif mode is 'scaleFill':
dw, dh = 0.0, 0.0
new_unpad = (new_shape, new_shape)
ratiow, ratioh = new_shape / shape[1], new_shape / shape[0]
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_AREA) # resized, no border
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded square
return img, ratiow, ratioh, dw, dh
def random_affine(img, targets=(), degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2),
borderValue=(127.5, 127.5, 127.5)):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
if targets is None:
targets = []
border = 0 # width of added border (optional)
height = img.shape[0] + border * 2
width = img.shape[1] + border * 2
# Rotation and Scale
R = np.eye(3)
a = random.random() * (degrees[1] - degrees[0]) + degrees[0]
# a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations
s = random.random() * (scale[1] - scale[0]) + scale[0]
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
# Translation
T = np.eye(3)
T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[0] + border # x translation (pixels)
T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[1] + border # y translation (pixels)
# Shear
S = np.eye(3)
S[0, 1] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # y shear (deg)
M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!!
imw = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_AREA,
borderValue=borderValue) # BGR order borderValue
# Return warped points also
if len(targets) > 0:
n = targets.shape[0]
points = targets[:, 1:5].copy()
area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1])
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = (xy @ M.T)[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# # apply angle-based reduction of bounding boxes
# radians = a * math.pi / 180
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
# x = (xy[:, 2] + xy[:, 0]) / 2
# y = (xy[:, 3] + xy[:, 1]) / 2
# w = (xy[:, 2] - xy[:, 0]) * reduction
# h = (xy[:, 3] - xy[:, 1]) * reduction
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
# reject warped points outside of image
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
w = xy[:, 2] - xy[:, 0]
h = xy[:, 3] - xy[:, 1]
area = w * h
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16))
i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10)
targets = targets[i]
targets[:, 1:5] = xy[i]
return imw, targets
def convert_images2bmp():
# cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s
for path in ['../coco/images/val2014/', '../coco/images/train2014/']:
folder = os.sep + Path(path).name
output = path.replace(folder, folder + 'bmp')
if os.path.exists(output):
shutil.rmtree(output) # delete output folder
os.makedirs(output) # make new output folder
for f in tqdm(glob.glob('%s*.jpg' % path)):
save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp')
cv2.imwrite(save_name, cv2.imread(f))
for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
with open(label_path, 'r') as file:
lines = file.read()
lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace(
'/Users/glennjocher/PycharmProjects/', '../')
with open(label_path.replace('5k', '5k_bmp'), 'w') as file:
file.write(lines)