34 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Docker
		
	
	
	
			
		
		
	
	
			34 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Docker
		
	
	
	
| # Start from Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
 | |
| FROM nvcr.io/nvidia/pytorch:19.08-py3
 | |
| 
 | |
| # Create working directory
 | |
| RUN mkdir -p /usr/src/app
 | |
| WORKDIR /usr/src/app
 | |
| 
 | |
| # Copy contents
 | |
| COPY . /usr/src/app
 | |
| 
 | |
| # Install dependencies (pip or conda)
 | |
| # RUN pip install -U -r requirements.txt
 | |
| # RUN conda update -n base -c defaults conda
 | |
| # RUN conda install -y -c anaconda future numpy opencv matplotlib tqdm pillow
 | |
| # RUN conda install -y -c conda-forge scikit-image tensorboard pycocotools
 | |
| # conda install pytorch torchvision -c pytorch
 | |
| 
 | |
| # Move model into container
 | |
| # RUN mv yolov3-spp.pt ./weights
 | |
| 
 | |
| 
 | |
| # ---------------------------------------------------  Extras Below  ---------------------------------------------------
 | |
| 
 | |
| # Build container
 | |
| # rm -rf yolov3  # Warning: remove existing
 | |
| # git clone https://github.com/ultralytics/yolov3 && cd yolov3 && python3 detect.py
 | |
| # sudo docker image prune -af && sudo docker build -t ultralytics/yolov3:v0 .
 | |
| 
 | |
| # Run container
 | |
| # time sudo nvidia-docker run ultralytics/yolov3:v0 python3 detect.py
 | |
| 
 | |
| # Push container to https://hub.docker.com/u/ultralytics
 | |
| # sudo docker push ultralytics/xview:v30
 |