car-detection-bayes/utils/utils.py

438 lines
18 KiB
Python
Executable File

import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
# Set printoptions
torch.set_printoptions(linewidth=1320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{11.5g}'.format}) # format short g, %precision=5
def load_classes(path):
"""
Loads class labels at 'path'
"""
fp = open(path, "r")
names = fp.read().split("\n")[:-1]
return names
def modelinfo(model): # Plots a line-by-line description of a PyTorch model
nparams = sum(x.numel() for x in model.parameters())
ngradients = sum(x.numel() for x in model.parameters() if x.requires_grad)
print('\n%4s %70s %9s %12s %20s %12s %12s' % ('', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%4g %70s %9s %12g %20s %12g %12g' % (
i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
print('\n%g layers, %g parameters, %g gradients' % (i + 1, nparams, ngradients))
def xview_class_weights(indices): # weights of each class in the training set, normalized to mu = 1
weights = 1 / torch.FloatTensor(
[74, 364, 713, 71, 2925, 209767, 6925, 1101, 3612, 12134, 5871, 3640, 860, 4062, 895, 149, 174, 17, 1624, 1846,
125, 122, 124, 662, 1452, 697, 222, 190, 786, 200, 450, 295, 79, 205, 156, 181, 70, 64, 337, 1352, 336, 78,
628, 841, 287, 83, 702, 1177, 313865, 195, 1081, 882, 1059, 4175, 123, 1700, 2317, 1579, 368, 85])
weights /= weights.sum()
return weights[indices]
def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img
tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.03)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.03)
torch.nn.init.constant_(m.bias.data, 0.0)
def xyxy2xywh(x): # Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
y[:, 2] = x[:, 2] - x[:, 0]
y[:, 3] = x[:, 3] - x[:, 1]
return y
def xywh2xyxy(x): # Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
y = torch.zeros(x.shape) if x.dtype is torch.float32 else np.zeros(x.shape)
y[:, 0] = (x[:, 0] - x[:, 2] / 2)
y[:, 1] = (x[:, 1] - x[:, 3] / 2)
y[:, 2] = (x[:, 0] + x[:, 2] / 2)
y[:, 3] = (x[:, 1] + x[:, 3] / 2)
return y
def ap_per_class(tp, conf, pred_cls, target_cls):
""" Compute the average precision, given the recall and precision curves.
Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (list).
conf: Objectness value from 0-1 (list).
pred_cls: Predicted object classes (list).
target_cls: True object classes (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# lists/pytorch to numpy
tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(pred_cls), np.array(target_cls)
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))
# Create Precision-Recall curve and compute AP for each class
ap = []
for c in unique_classes:
i = pred_cls == c
n_gt = sum(target_cls == c) # Number of ground truth objects
n_p = sum(i) # Number of predicted objects
if (n_p == 0) and (n_gt == 0):
continue
elif (np == 0) and (n_gt > 0):
ap.append(0)
elif (n_p > 0) and (n_gt == 0):
ap.append(0)
else:
# Accumulate FPs and TPs
fpa = np.cumsum(1 - tp[i])
tpa = np.cumsum(tp[i])
# Recall
recall = tpa / (n_gt + 1e-16)
# Precision
precision = tpa / (tpa + fpa)
# AP from recall-precision curve
ap.append(compute_ap(recall, precision))
return np.array(ap)
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def bbox_iou(box1, box2, x1y1x2y2=True):
"""
Returns the IoU of two bounding boxes
"""
if x1y1x2y2:
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
else:
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
# get the corrdinates of the intersection rectangle
inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y2 = torch.min(b1_y2, b2_y2)
# Intersection area
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0)
# Union Area
b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
return inter_area / (b1_area + b2_area - inter_area + 1e-16)
def build_targets(pred_boxes, pred_conf, pred_cls, target, anchor_wh, nA, nC, nG, requestPrecision):
"""
returns nGT, nCorrect, tx, ty, tw, th, tconf, tcls
"""
nB = len(target) # target.shape[0]
nT = [len(x) for x in target] # torch.argmin(target[:, :, 4], 1) # targets per image
tx = torch.zeros(nB, nA, nG, nG) # batch size (4), number of anchors (3), number of grid points (13)
ty = torch.zeros(nB, nA, nG, nG)
tw = torch.zeros(nB, nA, nG, nG)
th = torch.zeros(nB, nA, nG, nG)
tconf = torch.ByteTensor(nB, nA, nG, nG).fill_(0)
tcls = torch.ByteTensor(nB, nA, nG, nG, nC).fill_(0) # nC = number of classes
TP = torch.ByteTensor(nB, max(nT)).fill_(0)
FP = torch.ByteTensor(nB, max(nT)).fill_(0)
FN = torch.ByteTensor(nB, max(nT)).fill_(0)
TC = torch.ShortTensor(nB, max(nT)).fill_(-1) # target category
for b in range(nB):
nTb = nT[b] # number of targets
if nTb == 0:
continue
t = target[b]
FN[b, :nTb] = 1
# Convert to position relative to box
TC[b, :nTb], gx, gy, gw, gh = t[:, 0].long(), t[:, 1] * nG, t[:, 2] * nG, t[:, 3] * nG, t[:, 4] * nG
# Get grid box indices and prevent overflows (i.e. 13.01 on 13 anchors)
gi = torch.clamp(gx.long(), min=0, max=nG - 1)
gj = torch.clamp(gy.long(), min=0, max=nG - 1)
# iou of targets-anchors (using wh only)
box1 = t[:, 3:5] * nG
# box2 = anchor_grid_wh[:, gj, gi]
box2 = anchor_wh.unsqueeze(1).repeat(1, nTb, 1)
inter_area = torch.min(box1, box2).prod(2)
iou_anch = inter_area / (gw * gh + box2.prod(2) - inter_area + 1e-16)
# Select best iou_pred and anchor
iou_anch_best, a = iou_anch.max(0) # best anchor [0-2] for each target
# Select best unique target-anchor combinations
if nTb > 1:
iou_order = np.argsort(-iou_anch_best) # best to worst
# Unique anchor selection (slower but retains original order)
u = torch.cat((gi, gj, a), 0).view(3, -1).numpy()
_, first_unique = np.unique(u[:, iou_order], axis=1, return_index=True) # first unique indices
# Unique anchor selection (faster but does not retain order) TODO: update to retain original order
# u = gi.float() * 0.4361538773074043 + gj.float() * 0.28012496588736746 + a.float() * 0.6627147212460307
# _, first_unique_sorted = np.unique(u[iou_order], return_index=True) # first unique indices
# Slow - fast difference comparison
# print(((first_unique - first_unique_sorted) ** 2).sum())
i = iou_order[first_unique]
# best anchor must share significant commonality (iou) with target
i = i[iou_anch_best[i] > 0.10]
if len(i) == 0:
continue
a, gj, gi, t = a[i], gj[i], gi[i], t[i]
if len(t.shape) == 1:
t = t.view(1, 5)
else:
if iou_anch_best < 0.10:
continue
i = 0
tc, gx, gy, gw, gh = t[:, 0].long(), t[:, 1] * nG, t[:, 2] * nG, t[:, 3] * nG, t[:, 4] * nG
# Coordinates
tx[b, a, gj, gi] = gx - gi.float()
ty[b, a, gj, gi] = gy - gj.float()
# Width and height (sqrt method)
# tw[b, a, gj, gi] = torch.sqrt(gw / anchor_wh[a, 0]) / 2
# th[b, a, gj, gi] = torch.sqrt(gh / anchor_wh[a, 1]) / 2
# Width and height (yolov3 method)
tw[b, a, gj, gi] = torch.log(gw / anchor_wh[a, 0] + 1e-16)
th[b, a, gj, gi] = torch.log(gh / anchor_wh[a, 1] + 1e-16)
# One-hot encoding of label
tcls[b, a, gj, gi, tc] = 1
tconf[b, a, gj, gi] = 1
if requestPrecision:
# predicted classes and confidence
tb = torch.cat((gx - gw / 2, gy - gh / 2, gx + gw / 2, gy + gh / 2)).view(4, -1).t() # target boxes
pcls = torch.argmax(pred_cls[b, a, gj, gi], 1).cpu()
pconf = torch.sigmoid(pred_conf[b, a, gj, gi]).cpu()
iou_pred = bbox_iou(tb, pred_boxes[b, a, gj, gi].cpu())
TP[b, i] = (pconf > 0.99) & (iou_pred > 0.5) & (pcls == tc)
FP[b, i] = (pconf > 0.99) & (TP[b, i] == 0) # coordinates or class are wrong
FN[b, i] = pconf <= 0.99 # confidence score is too low (set to zero)
return tx, ty, tw, th, tconf, tcls, TP, FP, FN, TC
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
prediction = prediction.cpu()
"""
Removes detections with lower object confidence score than 'conf_thres' and performs
Non-Maximum Suppression to further filter detections.
Returns detections with shape:
(x1, y1, x2, y2, object_conf, class_score, class_pred)
"""
output = [None for _ in range(len(prediction))]
for image_i, pred in enumerate(prediction):
# Filter out confidence scores below threshold
# Get score and class with highest confidence
# cross-class NMS
cross_class_nms = False
if cross_class_nms:
thresh = 0.85
a = pred.clone()
a = a[np.argsort(-a[:, 4])] # sort best to worst
radius = 30 # area to search for cross-class ious
for i in range(len(a)):
if i >= len(a) - 1:
break
close = (np.abs(a[i, 0] - a[i + 1:, 0]) < radius) & (np.abs(a[i, 1] - a[i + 1:, 1]) < radius)
close = close.nonzero()
if len(close) > 0:
close = close + i + 1
iou = bbox_iou(a[i:i + 1, :4], a[close.squeeze(), :4].reshape(-1, 4), x1y1x2y2=False)
bad = close[iou > thresh]
if len(bad) > 0:
mask = torch.ones(len(a)).type(torch.ByteTensor)
mask[bad] = 0
a = a[mask]
pred = a
x, y, w, h = pred[:, 0].numpy(), pred[:, 1].numpy(), pred[:, 2].numpy(), pred[:, 3].numpy()
a = w * h # area
ar = w / (h + 1e-16) # aspect ratio
log_w, log_h, log_a, log_ar = np.log(w), np.log(h), np.log(a), np.log(ar)
# n = len(w)
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
# x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1)
# from scipy.stats import multivariate_normal
# for c in range(60):
# shape_likelihood[:, c] = multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2])
class_prob, class_pred = torch.max(F.softmax(pred[:, 5:], 1), 1)
v = ((pred[:, 4] > conf_thres) & (class_prob > .3)).numpy()
v = v.nonzero()
pred = pred[v]
class_prob = class_prob[v]
class_pred = class_pred[v]
# If none are remaining => process next image
nP = pred.shape[0]
if not nP:
continue
# From (center x, center y, width, height) to (x1, y1, x2, y2)
box_corner = pred.new(nP, 4)
xy = pred[:, 0:2]
wh = pred[:, 2:4] / 2
box_corner[:, 0:2] = xy - wh
box_corner[:, 2:4] = xy + wh
pred[:, :4] = box_corner
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_prob, class_pred)
detections = torch.cat((pred[:, :5], class_prob.float().unsqueeze(1), class_pred.float().unsqueeze(1)), 1)
# Iterate through all predicted classes
unique_labels = detections[:, -1].cpu().unique()
if prediction.is_cuda:
unique_labels = unique_labels.cuda()
nms_style = 'OR' # 'AND' or 'OR' (classical)
for c in unique_labels:
# Get the detections with the particular class
detections_class = detections[detections[:, -1] == c]
# Sort the detections by maximum objectness confidence
_, conf_sort_index = torch.sort(detections_class[:, 4], descending=True)
detections_class = detections_class[conf_sort_index]
# Perform non-maximum suppression
max_detections = []
if nms_style == 'OR': # Classical NMS
while detections_class.shape[0]:
# Get detection with highest confidence and save as max detection
max_detections.append(detections_class[0].unsqueeze(0))
# Stop if we're at the last detection
if len(detections_class) == 1:
break
# Get the IOUs for all boxes with lower confidence
ious = bbox_iou(max_detections[-1], detections_class[1:])
# Remove detections with IoU >= NMS threshold
detections_class = detections_class[1:][ious < nms_thres]
elif nms_style == 'AND': # 'AND'-style NMS, at least two boxes must share commonality to pass, single boxes erased
while detections_class.shape[0]:
if len(detections_class) == 1:
break
ious = bbox_iou(detections_class[:1], detections_class[1:])
if ious.max() > 0.5:
max_detections.append(detections_class[0].unsqueeze(0))
# Remove detections with IoU >= NMS threshold
detections_class = detections_class[1:][ious < nms_thres]
if len(max_detections) > 0:
max_detections = torch.cat(max_detections).data
# Add max detections to outputs
output[image_i] = max_detections if output[image_i] is None else torch.cat(
(output[image_i], max_detections))
return output
def strip_optimizer_from_checkpoint(filename='checkpoints/best.pt'):
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
import torch
a = torch.load(filename, map_location='cpu')
a['optimizer'] = []
torch.save(a, filename.replace('.pt', '_lite.pt'))
def plotResults():
# Plot YOLO training results file "results.txt"
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(16, 8))
s = ['X', 'Y', 'Width', 'Height', 'Objectness', 'Classification', 'Total Loss', 'Precision', 'Recall']
for f in ('/Users/glennjocher/Downloads/results_CE.txt',
'/Users/glennjocher/Downloads/results_BCE.txt'):
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 7, 8, 9, 10]).T
for i in range(9):
plt.subplot(2, 5, i + 1)
plt.plot(results[i, :], marker='.', label=f)
plt.title(s[i])
plt.legend()