car-detection-bayes/train.py

404 lines
20 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import time
import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import test # import test.py to get mAP after each epoch
from models import *
from utils.datasets import *
from utils.utils import *
mixed_precision = True
try: # Mixed precision training https://github.com/NVIDIA/apex
from apex import amp
except:
mixed_precision = False # not installed
# 320 --epochs 1
# 0.109 0.297 0.150 0.126 7.04 1.666 4.062 0.1845 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 a 320 giou + best_anchor False
# 0.223 0.218 0.138 0.189 9.28 1.153 4.376 0.08263 24.28 3.05 20.93 2.842 0.2759 0.001357 -5.036 0.9158 0.0005722 b mAP/F1 - 50/50 weighting
# 0.231 0.215 0.135 0.191 9.51 1.432 3.007 0.06082 24.87 3.477 24.13 2.802 0.3436 0.001127 -5.036 0.9232 0.0005874 c
# 0.246 0.194 0.128 0.192 8.12 1.101 3.954 0.0817 22.83 3.967 19.83 1.779 0.3352 0.000895 -5.036 0.9238 0.0007973 d
# 0.187 0.237 0.144 0.186 14.6 1.607 4.202 0.09439 39.27 3.726 31.26 2.634 0.273 0.001542 -5.036 0.8364 0.0008393 e
# 0.250 0.217 0.136 0.195 3.3 1.2 2 0.604 15.7 3.67 20 1.36 0.194 0.00128 -4 0.95 0.000201 0.8 0.388 1.2 0.119 0.0589 0.401 f
# 0.269 0.225 0.149 0.218 6.71 1.13 5.25 0.246 22.4 3.64 17.8 1.31 0.256 0.00146 -4 0.936 0.00042 0.123 0.18 1.81 0.0987 0.0788 0.441 g
# 0.179 0.274 0.165 0.187 7.95 1.22 7.62 0.224 17 5.71 17.7 3.28 0.295 0.00136 -4 0.875 0.000319 0.131 0.208 2.14 0.14 0.0773 0.228 h
# 0.296 0.228 0.152 0.220 5.18 1.43 4.27 0.265 11.7 4.81 11.5 1.56 0.281 0.0013 -4 0.944 0.000427 0.0599 0.142 1.03 0.0552 0.0555 0.434 i
# 320 --epochs 2
# 0.242 0.296 0.196 0.231 5.67 0.8541 4.286 0.1539 21.61 1.957 22.9 2.894 0.3689 0.001844 -4 0.913 0.000467 # ha 0.417 mAP @ epoch 100
# 0.298 0.244 0.167 0.247 4.99 0.8896 4.067 0.1694 21.41 2.033 25.61 1.783 0.4115 0.00128 -4 0.950 0.000377 # hb
# 0.268 0.268 0.178 0.240 4.36 1.104 5.596 0.2087 14.47 2.599 16.27 2.406 0.4114 0.001585 -4 0.950 0.000524 # hc
# 0.161 0.327 0.190 0.193 7.82 1.153 4.062 0.1845 24.28 3.05 20.93 2.842 0.2759 0.001357 -4 0.916 0.000572 # hd 0.438 mAP @ epoch 100
# Training hyperparameters g
# hyp = {'giou': 1.13, # giou loss gain
# 'xy': 5.25, # xy loss gain
# 'wh': 0.246, # wh loss gain
# 'cls': 22.4, # cls loss gain
# 'cls_pw': 3.64, # cls BCELoss positive_weight
# 'obj': 17.8, # obj loss gain
# 'obj_pw': 1.31, # obj BCELoss positive_weight
# 'iou_t': 0.256, # iou training threshold
# 'lr0': 0.00146, # initial learning rate
# 'lrf': -4., # final LambdaLR learning rate = lr0 * (10 ** lrf)
# 'momentum': 0.936, # SGD momentum
# 'weight_decay': 0.00042, # optimizer weight decay
# 'hsv_s': 0.123, # image HSV-Saturation augmentation (fraction)
# 'hsv_v': 0.18, # image HSV-Value augmentation (fraction)
# 'degrees': 1.81, # image rotation (+/- deg)
# 'translate': 0.0987, # image translation (+/- fraction)
# 'scale': 0.0788, # image scale (+/- gain)
# 'shear': 0.441} # image shear (+/- deg)
# Training hyperparameters i
hyp = {'giou': 1.43, # giou loss gain
'xy': 4.27, # xy loss gain
'wh': 0.265, # wh loss gain
'cls': 11.7, # cls loss gain
'cls_pw': 4.81, # cls BCELoss positive_weight
'obj': 11.5, # obj loss gain
'obj_pw': 1.56, # obj BCELoss positive_weight
'iou_t': 0.281, # iou training threshold
'lr0': 0.0013, # initial learning rate
'lrf': -4., # final LambdaLR learning rate = lr0 * (10 ** lrf)
'momentum': 0.944, # SGD momentum
'weight_decay': 0.000427, # optimizer weight decay
'hsv_s': 0.0599, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.142, # image HSV-Value augmentation (fraction)
'degrees': 1.03, # image rotation (+/- deg)
'translate': 0.0552, # image translation (+/- fraction)
'scale': 0.0555, # image scale (+/- gain)
'shear': 0.434} # image shear (+/- deg)
def train(cfg,
data,
img_size=416,
epochs=100, # 500200 batches at bs 16, 117263 images = 273 epochs
batch_size=16,
accumulate=4): # effective bs = batch_size * accumulate = 16 * 4 = 64
# Initialize
init_seeds()
weights = 'weights' + os.sep
last = weights + 'last.pt'
best = weights + 'best.pt'
device = torch_utils.select_device(apex=mixed_precision)
multi_scale = opt.multi_scale
if multi_scale:
img_sz_min = round(img_size / 32 / 1.5) + 1
img_sz_max = round(img_size / 32 * 1.5) - 1
img_size = img_sz_max * 32 # initiate with maximum multi_scale size
print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))
# Configure run
data_dict = parse_data_cfg(data)
train_path = data_dict['train']
nc = int(data_dict['classes']) # number of classes
# Initialize model
model = Darknet(cfg).to(device)
# Optimizer
optimizer = optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay'],
nesterov=True)
# optimizer = AdaBound(model.parameters(), lr=hyp['lr0'], final_lr=0.1)
cutoff = -1 # backbone reaches to cutoff layer
start_epoch = 0
best_fitness = 0.
if opt.resume or opt.transfer: # Load previously saved model
if opt.transfer: # Transfer learning
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
chkpt = torch.load(weights + 'yolov3-spp.pt', map_location=device)
model.load_state_dict({k: v for k, v in chkpt['model'].items() if v.numel() > 1 and v.shape[0] != 255},
strict=False)
for p in model.parameters():
p.requires_grad = True if p.shape[0] == nf else False
else: # resume from last.pt
if opt.bucket:
os.system('gsutil cp gs://%s/last.pt %s' % (opt.bucket, last)) # download from bucket
chkpt = torch.load(last, map_location=device) # load checkpoint
model.load_state_dict(chkpt['model'])
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']
if chkpt.get('training_results') is not None:
with open('results.txt', 'w') as file:
file.write(chkpt['training_results']) # write results.txt
start_epoch = chkpt['epoch'] + 1
del chkpt
else: # Initialize model with backbone (optional)
if '-tiny.cfg' in cfg:
cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
else:
cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
# Remove old results
for f in glob.glob('*_batch*.jpg') + glob.glob('results.txt'):
os.remove(f)
# Scheduler https://github.com/ultralytics/yolov3/issues/238
# lf = lambda x: 1 - x / epochs # linear ramp to zero
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
# scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in [0.8, 0.9]], gamma=0.1)
scheduler.last_epoch = start_epoch - 1
# # Plot lr schedule
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
# plt.plot(y, label='LambdaLR')
# plt.xlabel('epoch')
# plt.ylabel('LR')
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
# Mixed precision training https://github.com/NVIDIA/apex
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
# Initialize distributed training
if torch.cuda.device_count() > 1:
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:9999', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model)
# Dataset
dataset = LoadImagesAndLabels(train_path,
img_size,
batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=opt.rect, # rectangular training
image_weights=opt.img_weights)
# Dataloader
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=opt.num_workers,
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
# Start training
model.hyp = hyp # attach hyperparameters to model
if dataset.image_weights:
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
model_info(model, report='summary') # 'full' or 'summary'
nb = len(dataloader)
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0) # P, R, mAP, F1, test_loss
# n_burnin = min(round(nb / 5 + 1), 1000) # burn-in batches
t0 = time.time()
for epoch in range(start_epoch, epochs):
model.train()
print(('\n' + '%10s' * 9) %
('Epoch', 'gpu_mem', 'GIoU/xy', 'wh', 'obj', 'cls', 'total', 'targets', 'img_size'))
# Update scheduler
scheduler.step()
# Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
freeze_backbone = False
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
# Update image weights (optional)
if dataset.image_weights:
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
mloss = torch.zeros(5).to(device) # mean losses
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
for i, (imgs, targets, paths, _) in pbar:
imgs = imgs.to(device)
targets = targets.to(device)
# Multi-Scale training TODO: short-side to 32-multiple https://github.com/ultralytics/yolov3/issues/358
if multi_scale:
if (i + nb * epoch) / accumulate % 10 == 0: #  adjust (67% - 150%) every 10 batches
img_size = random.randrange(img_sz_min, img_sz_max + 1) * 32
sf = img_size / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / 32.) * 32 for x in imgs.shape[2:]] # new shape
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Plot images with bounding boxes
if epoch == 0 and i == 0:
plot_images(imgs=imgs, targets=targets, paths=paths, fname='train_batch%g.jpg' % i)
# SGD burn-in
# if epoch == 0 and i <= n_burnin:
# g = (i / n_burnin) ** 4 # gain
# for x in optimizer.param_groups:
# x['lr'] = hyp['lr0'] * g
# x['weight_decay'] = hyp['weight_decay'] * g
# Run model
pred = model(imgs)
# Compute loss
loss, loss_items = compute_loss(pred, targets, model, giou_loss=not opt.xywh)
if torch.isnan(loss):
print('WARNING: nan loss detected, ending training')
return results
# Compute gradient
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# Accumulate gradient for x batches before optimizing
if (i + 1) % accumulate == 0 or (i + 1) == nb:
optimizer.step()
optimizer.zero_grad()
# Print batch results
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s = ('%10s' * 2 + '%10.3g' * 7) % (
'%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, len(targets), img_size)
pbar.set_description(s)
# Calculate mAP (always test final epoch, skip first 5 if opt.nosave)
if not (opt.notest or (opt.nosave and epoch < 10)) or epoch == epochs - 1:
with torch.no_grad():
results, maps = test.test(cfg, data, batch_size=batch_size, img_size=opt.img_size, model=model,
conf_thres=0.1)
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '%11.3g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
# Update best map
fitness = results[2] # mAP
if fitness > best_fitness:
best_fitness = fitness
# Save training results
save = (not opt.nosave) or ((not opt.evolve) and (epoch == epochs - 1))
if save:
with open('results.txt', 'r') as file:
# Create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': file.read(),
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': optimizer.state_dict()}
# Save last checkpoint
torch.save(chkpt, last)
if opt.bucket:
os.system('gsutil cp %s gs://%s' % (last, opt.bucket)) # upload to bucket
# Save best checkpoint
if best_fitness == fitness:
torch.save(chkpt, best)
# Save backup every 10 epochs (optional)
if epoch > 0 and epoch % 10 == 0:
torch.save(chkpt, weights + 'backup%g.pt' % epoch)
# Delete checkpoint
del chkpt
# Report time
print('%g epochs completed in %.3f hours.' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=273, help='number of epochs')
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
parser.add_argument('--accumulate', type=int, default=2, help='number of batches to accumulate before optimizing')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='coco.data file path')
parser.add_argument('--multi-scale', action='store_true', help='train at (1/1.5)x - 1.5x sizes')
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
parser.add_argument('--num-workers', type=int, default=os.cpu_count(), help='DataLoader workers')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--xywh', action='store_true', help='use xywh loss instead of GIoU loss')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--img-weights', action='store_true', help='select training images by weight')
opt = parser.parse_args()
print(opt)
if not opt.evolve: # Train normally
results = train(opt.cfg,
opt.data,
img_size=opt.img_size,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulate=opt.accumulate)
else: # Evolve hyperparameters (optional)
opt.notest = True # only test final epoch
opt.nosave = True # only save final checkpoint
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
for _ in range(100): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Get best hyperparameters
x = np.loadtxt('evolve.txt', ndmin=2)
x = x[fitness(x).argmax()] # select best fitness hyps
for i, k in enumerate(hyp.keys()):
hyp[k] = x[i + 5]
# Mutate
init_seeds(seed=int(time.time()))
s = [.15, .15, .15, .15, .15, .15, .15, .15, .15, .00, .05, .20, .20, .20, .20, .20, .20, .20] # sigmas
for i, k in enumerate(hyp.keys()):
x = (np.random.randn(1) * s[i] + 1) ** 2.0 # plt.hist(x.ravel(), 300)
hyp[k] *= float(x) # vary by sigmas
# Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale']
limits = [(1e-4, 1e-2), (0.00, 0.70), (0.60, 0.97), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
# Train mutation
results = train(opt.cfg,
opt.data,
img_size=opt.img_size,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulate=opt.accumulate)
# Write mutation results
print_mutation(hyp, results, opt.bucket)
# Plot results
# plot_evolution_results(hyp)