Go to file
Glenn Jocher 413afab11c updates 2019-11-27 14:59:46 -10:00
.github/ISSUE_TEMPLATE Update issue templates 2019-03-25 15:27:09 +01:00
cfg updates 2019-11-23 19:27:33 -10:00
data updates 2019-11-22 14:36:49 -10:00
utils updates 2019-11-26 10:26:14 -10:00
weights updates 2019-04-23 18:53:36 +02:00
.gitignore updates 2019-08-15 20:19:30 +02:00
Dockerfile updates 2019-11-17 17:17:52 -08:00
LICENSE Initial commit 2018-08-26 10:51:39 +02:00
README.md updates 2019-11-27 14:59:46 -10:00
detect.py updates 2019-11-07 17:55:30 -08:00
examples.ipynb Update examples.ipynb 2019-08-19 12:30:42 +02:00
models.py updates 2019-11-25 18:42:48 -10:00
requirements.txt updates 2019-11-23 09:35:11 -10:00
test.py updates 2019-11-24 18:29:29 -10:00
train.py updates 2019-11-25 17:24:05 -10:00

README.md

Introduction

This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.

Description

The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. Credit to Joseph Redmon for YOLO: https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.7 or later with the following pip3 install -U -r requirements.txt packages:

  • numpy
  • torch >= 1.1.0
  • opencv-python
  • tqdm

Tutorials

Jupyter Notebook

Our Jupyter notebook provides quick training, inference and testing examples.

Training

Start Training: python3 train.py to begin training after downloading COCO data with data/get_coco_dataset.sh. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.

Resume Training: python3 train.py --resume to resume training from weights/last.pt.

Plot Training: from utils import utils; utils.plot_results() plots training results from coco_16img.data, coco_64img.data, 2 example datasets available in the data/ folder, which train and test on the first 16 and 64 images of the COCO2014-trainval dataset.

Image Augmentation

datasets.py applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied only during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.

Augmentation Description
Translation +/- 10% (vertical and horizontal)
Rotation +/- 5 degrees
Shear +/- 2 degrees (vertical and horizontal)
Scale +/- 10%
Reflection 50% probability (horizontal-only)
HSV Saturation +/- 50%
HSV Intensity +/- 50%

Speed

https://cloud.google.com/deep-learning-vm/
Machine type: n1-standard-8 (8 vCPUs, 30 GB memory)
CPU platform: Intel Skylake
GPUs: K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.83/hr) CUDA with Nvidia Apex FP16/32
HDD: 100 GB SSD
Dataset: COCO train 2014 (117,263 images)

GPUs batch_size images/sec epoch time epoch cost
K80 64 (32x2) 11 175 min $0.58
T4 64 (32x2) 40 49 min $0.29
T4 x2 64 (64x1) 61 32 min $0.36
V100 64 (32x2) 115 17 min $0.24
V100 x2 64 (64x1) 150 13 min $0.36
2080Ti 64 (32x2) 81 24 min -
2080Ti x2 64 (64x1) 140 14 min -

Inference

detect.py runs inference on any sources:

python3 detect.py --source ...
  • Image: --source file.jpg
  • Video: --source file.mp4
  • Directory: --source dir/
  • Webcam: --source 0
  • RTSP stream: --source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa
  • HTTP stream: --source http://wmccpinetop.axiscam.net/mjpg/video.mjpg

To run a specific models:

YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights weights/yolov3.weights

YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.weights

YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights weights/yolov3-spp.weights

Pretrained Weights

Download from: https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0

Darknet Conversion

$ git clone https://github.com/ultralytics/yolov3 && cd yolov3

# convert darknet cfg/weights to pytorch model
$ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'

# convert cfg/pytorch model to darknet weights
$ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'

mAP

  • test.py --weights weights/yolov3.weights tests official YOLOv3 weights.
  • test.py --weights weights/last.pt tests latest checkpoint.
  • mAPs on COCO2014 using pycocotools.
  • mAP@0.5 run at --iou-thres 0.5, mAP@0.5 run at --iou-thres 0.65
  • YOLOv3-SPP ultralytics is ultralytics68.pt with yolov3-spp.cfg.
  • Darknet results published in https://arxiv.org/abs/1804.02767.
resolution COCO mAP
@0.5...0.95
COCO mAP
@0.5
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
YOLOv3-SPP ultralytics
320 14.0
28.7
30.5
35.2
29.0
51.5
52.3
53.9
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
YOLOv3-SPP ultralytics
416 16.0
31.1
33.9
38.8
32.9
55.3
56.8
58.7
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
YOLOv3-SPP ultralytics
608 16.6
33.0
37.0
40.4
35.5
57.9
60.6
60.1
$ python3 test.py --save-json --img-size 608 --weights ultralytics68.pt
Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco.data', device='', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='ultralytics68.pt')
Using CUDA device0 _CudaDeviceProperties(name='Tesla T4', total_memory=15079MB)

               Class    Images   Targets         P         R   mAP@0.5        F1: 100% 313/313 [06:52<00:00,  1.24it/s]
                 all     5e+03  3.58e+04     0.107     0.779      0.59     0.182
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.398 <---
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.601 <---
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.425
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.438
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.505
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.325
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.519
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.543
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.366
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.584
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.665

Citation

DOI

Contact

Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.