car-detection-bayes/test.py

197 lines
7.5 KiB
Python

import argparse
import json
from torch.utils.data import DataLoader
from models import *
from utils.datasets import *
from utils.utils import *
def test(
cfg,
data_cfg,
weights=None,
batch_size=16,
img_size=416,
iou_thres=0.5,
conf_thres=0.1,
nms_thres=0.5,
save_json=False,
model=None
):
if model is None:
device = torch_utils.select_device()
# Initialize model
model = Darknet(cfg, img_size).to(device)
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else: # darknet format
_ = load_darknet_weights(model, weights)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
else:
device = next(model.parameters()).device # get model device
# Configure run
data_cfg = parse_data_cfg(data_cfg)
nc = int(data_cfg['classes']) # number of classes
test_path = data_cfg['valid'] # path to test images
names = load_classes(data_cfg['names']) # class names
# Dataloader
dataset = LoadImagesAndLabels(test_path, img_size=img_size)
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=0,
pin_memory=False,
collate_fn=dataset.collate_fn)
seen = 0
model.eval()
coco91class = coco80_to_coco91_class()
print('%15s' * 7 % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP', 'F1'))
loss, p, r, f1, mp, mr, map, mf1 = 0., 0., 0., 0., 0., 0., 0., 0.
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc='Computing mAP')):
targets = targets.to(device)
imgs = imgs.to(device)
# Run model
inf_out, train_out = model(imgs) # inference and training outputs
# Build targets
target_list = build_targets(model, targets)
# Compute loss
loss_i, _ = compute_loss(train_out, target_list)
loss += loss_i.item()
# Run NMS
output = non_max_suppression(inf_out, conf_thres=conf_thres, nms_thres=nms_thres)
# Statistics per image
for si, pred in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
correct, detected = [], []
tcls = torch.Tensor()
seen += 1
if pred is None:
if len(labels):
tcls = labels[:, 0].cpu() # target classes
stats.append((correct, torch.Tensor(), torch.Tensor(), tcls))
continue
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(Path(paths[si]).stem.split('_')[-1])
box = pred[:, :4].clone() # xyxy
scale_coords(img_size, box, shapes[si]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for di, d in enumerate(pred):
jdict.append({
'image_id': image_id,
'category_id': coco91class[int(d[6])],
'bbox': [float3(x) for x in box[di]],
'score': float(d[4])
})
if len(labels):
# Extract target boxes as (x1, y1, x2, y2)
tbox = xywh2xyxy(labels[:, 1:5]) * img_size # target boxes
tcls = labels[:, 0] # target classes
for *pbox, pconf, pcls_conf, pcls in pred:
if pcls not in tcls:
correct.append(0)
continue
# Best iou, index between pred and targets
iou, bi = bbox_iou(pbox, tbox).max(0)
# If iou > threshold and class is correct mark as correct
if iou > iou_thres and bi not in detected:
correct.append(1)
detected.append(bi)
else:
correct.append(0)
else:
# If no labels add number of detections as incorrect
correct.extend([0] * len(pred))
# Append Statistics (correct, conf, pcls, tcls)
stats.append((correct, pred[:, 4].cpu(), pred[:, 6].cpu(), tcls.cpu()))
# Compute statistics
stats_np = [np.concatenate(x, 0) for x in list(zip(*stats))]
nt = np.bincount(stats_np[3].astype(np.int64), minlength=nc) # number of targets per class
if len(stats_np):
p, r, ap, f1, ap_class = ap_per_class(*stats_np)
mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
# Print results
print(('%15s' + '%15.3g' * 6) % ('all', seen, nt.sum(), mp, mr, map, mf1), end='\n\n')
# Print results per class
if nc > 1 and len(stats_np):
for i, c in enumerate(ap_class):
print(('%15s' + '%15.3g' * 6) % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))
# Save JSON
if save_json and map and len(jdict):
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataset.img_files]
with open('results.json', 'w') as file:
json.dump(jdict, file)
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO('../coco/annotations/instances_val2014.json') # initialize COCO ground truth api
cocoDt = cocoGt.loadRes('results.json') # initialize COCO pred api
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
map = cocoEval.stats[1] # update mAP to pycocotools mAP
# Return results
return mp, mr, map, mf1, loss
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data-cfg', type=str, default='data/coco.data', help='coco.data file path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp.weights', help='path to weights file')
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--img-size', type=int, default=416, help='size of each image dimension')
opt = parser.parse_args()
print(opt, end='\n\n')
with torch.no_grad():
mAP = test(
opt.cfg,
opt.data_cfg,
opt.weights,
opt.batch_size,
opt.img_size,
opt.iou_thres,
opt.conf_thres,
opt.nms_thres,
opt.save_json
)