494 lines
23 KiB
Python
494 lines
23 KiB
Python
import argparse
|
||
|
||
import torch.distributed as dist
|
||
import torch.optim as optim
|
||
import torch.optim.lr_scheduler as lr_scheduler
|
||
|
||
import test # import test.py to get mAP after each epoch
|
||
from models import *
|
||
from utils.datasets import *
|
||
from utils.utils import *
|
||
|
||
mixed_precision = True
|
||
try: # Mixed precision training https://github.com/NVIDIA/apex
|
||
from apex import amp
|
||
except:
|
||
mixed_precision = False # not installed
|
||
|
||
wdir = 'weights' + os.sep # weights dir
|
||
last = wdir + 'last.pt'
|
||
best = wdir + 'best.pt'
|
||
results_file = 'results.txt'
|
||
|
||
# Hyperparameters (k-series, 57.7 mAP yolov3-spp-416) https://github.com/ultralytics/yolov3/issues/310
|
||
hyp = {'giou': 3.31, # giou loss gain
|
||
'cls': 42.4, # cls loss gain
|
||
'cls_pw': 1.0, # cls BCELoss positive_weight
|
||
'obj': 52.0, # obj loss gain (*=img_size/320 if img_size != 320)
|
||
'obj_pw': 1.0, # obj BCELoss positive_weight
|
||
'iou_t': 0.213, # iou training threshold
|
||
'lr0': 0.00261, # initial learning rate (SGD=1E-3, Adam=9E-5)
|
||
'lrf': -4., # final LambdaLR learning rate = lr0 * (10 ** lrf)
|
||
'momentum': 0.949, # SGD momentum
|
||
'weight_decay': 0.000489, # optimizer weight decay
|
||
'fl_gamma': 0.5, # focal loss gamma
|
||
'hsv_h': 0.0103, # image HSV-Hue augmentation (fraction)
|
||
'hsv_s': 0.691, # image HSV-Saturation augmentation (fraction)
|
||
'hsv_v': 0.433, # image HSV-Value augmentation (fraction)
|
||
'degrees': 1.43, # image rotation (+/- deg)
|
||
'translate': 0.0663, # image translation (+/- fraction)
|
||
'scale': 0.11, # image scale (+/- gain)
|
||
'shear': 0.384} # image shear (+/- deg)
|
||
|
||
# Overwrite hyp with hyp*.txt (optional)
|
||
f = glob.glob('hyp*.txt')
|
||
if f:
|
||
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
|
||
hyp[k] = v
|
||
|
||
|
||
def train():
|
||
cfg = opt.cfg
|
||
data = opt.data
|
||
img_size = opt.img_size
|
||
epochs = 1 if opt.prebias else opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
|
||
batch_size = opt.batch_size
|
||
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
|
||
weights = opt.weights # initial training weights
|
||
|
||
if 'pw' not in opt.arc: # remove BCELoss positive weights
|
||
hyp['cls_pw'] = 1.
|
||
hyp['obj_pw'] = 1.
|
||
|
||
# Initialize
|
||
init_seeds()
|
||
if opt.multi_scale:
|
||
img_sz_min = round(img_size / 32 / 1.5)
|
||
img_sz_max = round(img_size / 32 * 1.5)
|
||
img_size = img_sz_max * 32 # initiate with maximum multi_scale size
|
||
print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))
|
||
|
||
# Configure run
|
||
data_dict = parse_data_cfg(data)
|
||
train_path = data_dict['train']
|
||
nc = int(data_dict['classes']) # number of classes
|
||
|
||
# Remove previous results
|
||
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
|
||
os.remove(f)
|
||
|
||
# Initialize model
|
||
model = Darknet(cfg, arc=opt.arc).to(device)
|
||
|
||
# Optimizer
|
||
pg0, pg1 = [], [] # optimizer parameter groups
|
||
for k, v in dict(model.named_parameters()).items():
|
||
if 'Conv2d.weight' in k:
|
||
pg1 += [v] # parameter group 1 (apply weight_decay)
|
||
else:
|
||
pg0 += [v] # parameter group 0
|
||
|
||
if opt.adam:
|
||
optimizer = optim.Adam(pg0, lr=hyp['lr0'])
|
||
# optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
|
||
else:
|
||
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
||
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
||
del pg0, pg1
|
||
|
||
# https://github.com/alphadl/lookahead.pytorch
|
||
# optimizer = torch_utils.Lookahead(optimizer, k=5, alpha=0.5)
|
||
|
||
cutoff = -1 # backbone reaches to cutoff layer
|
||
start_epoch = 0
|
||
best_fitness = float('inf')
|
||
attempt_download(weights)
|
||
if weights.endswith('.pt'): # pytorch format
|
||
# possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
|
||
chkpt = torch.load(weights, map_location=device)
|
||
|
||
# load model
|
||
try:
|
||
chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
|
||
model.load_state_dict(chkpt['model'], strict=False)
|
||
# model.load_state_dict(chkpt['model'])
|
||
except KeyError as e:
|
||
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
|
||
"See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
|
||
raise KeyError(s) from e
|
||
|
||
# load optimizer
|
||
if chkpt['optimizer'] is not None:
|
||
optimizer.load_state_dict(chkpt['optimizer'])
|
||
best_fitness = chkpt['best_fitness']
|
||
|
||
# load results
|
||
if chkpt.get('training_results') is not None:
|
||
with open(results_file, 'w') as file:
|
||
file.write(chkpt['training_results']) # write results.txt
|
||
|
||
start_epoch = chkpt['epoch'] + 1
|
||
del chkpt
|
||
|
||
elif len(weights) > 0: # darknet format
|
||
# possible weights are '*.weights', 'yolov3-tiny.conv.15', 'darknet53.conv.74' etc.
|
||
cutoff = load_darknet_weights(model, weights)
|
||
|
||
if opt.transfer or opt.prebias: # transfer learning edge (yolo) layers
|
||
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
|
||
|
||
if opt.prebias:
|
||
for p in optimizer.param_groups:
|
||
# lower param count allows more aggressive training settings: i.e. SGD ~0.1 lr0, ~0.9 momentum
|
||
p['lr'] *= 100 # lr gain
|
||
if p.get('momentum') is not None: # for SGD but not Adam
|
||
p['momentum'] *= 0.9
|
||
|
||
for p in model.parameters():
|
||
if opt.prebias and p.numel() == nf: # train (yolo biases)
|
||
p.requires_grad = True
|
||
elif opt.transfer and p.shape[0] == nf: # train (yolo biases+weights)
|
||
p.requires_grad = True
|
||
else: # freeze layer
|
||
p.requires_grad = False
|
||
|
||
# Scheduler https://github.com/ultralytics/yolov3/issues/238
|
||
# lf = lambda x: 1 - x / epochs # linear ramp to zero
|
||
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
|
||
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
|
||
# scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
||
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=range(59, 70, 1), gamma=0.8) # gradual fall to 0.1*lr0
|
||
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in [0.8, 0.9]], gamma=0.1)
|
||
scheduler.last_epoch = start_epoch - 1
|
||
|
||
# # Plot lr schedule
|
||
# y = []
|
||
# for _ in range(epochs):
|
||
# scheduler.step()
|
||
# y.append(optimizer.param_groups[0]['lr'])
|
||
# plt.plot(y, label='LambdaLR')
|
||
# plt.xlabel('epoch')
|
||
# plt.ylabel('LR')
|
||
# plt.tight_layout()
|
||
# plt.savefig('LR.png', dpi=300)
|
||
|
||
# Mixed precision training https://github.com/NVIDIA/apex
|
||
if mixed_precision:
|
||
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
|
||
|
||
# Initialize distributed training
|
||
if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
||
dist.init_process_group(backend='nccl', # 'distributed backend'
|
||
init_method='tcp://127.0.0.1:9999', # distributed training init method
|
||
world_size=1, # number of nodes for distributed training
|
||
rank=0) # distributed training node rank
|
||
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
|
||
model.yolo_layers = model.module.yolo_layers # move yolo layer indices to top level
|
||
|
||
# Dataset
|
||
dataset = LoadImagesAndLabels(train_path,
|
||
img_size,
|
||
batch_size,
|
||
augment=True,
|
||
hyp=hyp, # augmentation hyperparameters
|
||
rect=opt.rect, # rectangular training
|
||
image_weights=opt.img_weights,
|
||
cache_labels=True if epochs > 10 else False,
|
||
cache_images=False if opt.prebias else opt.cache_images)
|
||
|
||
# Dataloader
|
||
batch_size = min(batch_size, len(dataset))
|
||
dataloader = torch.utils.data.DataLoader(dataset,
|
||
batch_size=batch_size,
|
||
num_workers=min([os.cpu_count(), batch_size if batch_size > 1 else 0, 16]),
|
||
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
|
||
pin_memory=True,
|
||
collate_fn=dataset.collate_fn)
|
||
|
||
# Start training
|
||
model.nc = nc # attach number of classes to model
|
||
model.arc = opt.arc # attach yolo architecture
|
||
model.hyp = hyp # attach hyperparameters to model
|
||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
||
torch_utils.model_info(model, report='summary') # 'full' or 'summary'
|
||
nb = len(dataloader)
|
||
maps = np.zeros(nc) # mAP per class
|
||
# torch.autograd.set_detect_anomaly(True)
|
||
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
||
t0 = time.time()
|
||
print('Starting %s for %g epochs...' % ('prebias' if opt.prebias else 'training', epochs))
|
||
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||
model.train()
|
||
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
||
|
||
# Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
|
||
freeze_backbone = False
|
||
if freeze_backbone and epoch < 2:
|
||
for name, p in model.named_parameters():
|
||
if int(name.split('.')[1]) < cutoff: # if layer < 75
|
||
p.requires_grad = False if epoch == 0 else True
|
||
|
||
# Update image weights (optional)
|
||
if dataset.image_weights:
|
||
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
|
||
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
|
||
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
|
||
|
||
mloss = torch.zeros(4).to(device) # mean losses
|
||
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
|
||
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||
ni = i + nb * epoch # number integrated batches (since train start)
|
||
imgs = imgs.to(device)
|
||
targets = targets.to(device)
|
||
|
||
# Multi-Scale training
|
||
if opt.multi_scale:
|
||
if ni / accumulate % 10 == 0: # adjust (67% - 150%) every 10 batches
|
||
img_size = random.randrange(img_sz_min, img_sz_max + 1) * 32
|
||
sf = img_size / max(imgs.shape[2:]) # scale factor
|
||
if sf != 1:
|
||
ns = [math.ceil(x * sf / 32.) * 32 for x in imgs.shape[2:]] # new shape (stretched to 32-multiple)
|
||
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||
|
||
# Plot images with bounding boxes
|
||
if ni == 0:
|
||
fname = 'train_batch%g.jpg' % i
|
||
plot_images(imgs=imgs, targets=targets, paths=paths, fname=fname)
|
||
if tb_writer:
|
||
tb_writer.add_image(fname, cv2.imread(fname)[:, :, ::-1], dataformats='HWC')
|
||
|
||
# Hyperparameter burn-in
|
||
# n_burn = nb - 1 # min(nb // 5 + 1, 1000) # number of burn-in batches
|
||
# if ni <= n_burn:
|
||
# for m in model.named_modules():
|
||
# if m[0].endswith('BatchNorm2d'):
|
||
# m[1].momentum = 1 - i / n_burn * 0.99 # BatchNorm2d momentum falls from 1 - 0.01
|
||
# g = (i / n_burn) ** 4 # gain rises from 0 - 1
|
||
# for x in optimizer.param_groups:
|
||
# x['lr'] = hyp['lr0'] * g
|
||
# x['weight_decay'] = hyp['weight_decay'] * g
|
||
|
||
# Run model
|
||
pred = model(imgs)
|
||
|
||
# Compute loss
|
||
loss, loss_items = compute_loss(pred, targets, model)
|
||
if not torch.isfinite(loss):
|
||
print('WARNING: non-finite loss, ending training ', loss_items)
|
||
return results
|
||
|
||
# Scale loss by nominal batch_size of 64
|
||
loss *= batch_size / 64
|
||
|
||
# Compute gradient
|
||
if mixed_precision:
|
||
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
||
scaled_loss.backward()
|
||
else:
|
||
loss.backward()
|
||
|
||
# Accumulate gradient for x batches before optimizing
|
||
if ni % accumulate == 0:
|
||
optimizer.step()
|
||
optimizer.zero_grad()
|
||
|
||
# Print batch results
|
||
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||
mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB)
|
||
s = ('%10s' * 2 + '%10.3g' * 6) % (
|
||
'%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, len(targets), img_size)
|
||
pbar.set_description(s)
|
||
|
||
# end batch ------------------------------------------------------------------------------------------------
|
||
|
||
# Update scheduler
|
||
scheduler.step()
|
||
|
||
# Process epoch results
|
||
final_epoch = epoch + 1 == epochs
|
||
if opt.prebias:
|
||
print_model_biases(model)
|
||
else:
|
||
# Calculate mAP (always test final epoch, skip first 10 if opt.nosave)
|
||
if not (opt.notest or (opt.nosave and epoch < 10)) or final_epoch:
|
||
with torch.no_grad():
|
||
results, maps = test.test(cfg,
|
||
data,
|
||
batch_size=batch_size,
|
||
img_size=opt.img_size,
|
||
model=model,
|
||
conf_thres=0.001 if final_epoch and epoch > 0 else 0.1, # 0.1 for speed
|
||
save_json=final_epoch and epoch > 0 and 'coco.data' in data)
|
||
|
||
# Write epoch results
|
||
with open(results_file, 'a') as f:
|
||
f.write(s + '%10.3g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
||
if len(opt.name) and opt.bucket and not opt.prebias:
|
||
os.system('gsutil cp results.txt gs://%s/results%s.txt' % (opt.bucket, opt.name))
|
||
|
||
# Write Tensorboard results
|
||
if tb_writer:
|
||
x = list(mloss) + list(results)
|
||
titles = ['GIoU', 'Objectness', 'Classification', 'Train loss',
|
||
'Precision', 'Recall', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification']
|
||
for xi, title in zip(x, titles):
|
||
tb_writer.add_scalar(title, xi, epoch)
|
||
|
||
# Update best mAP
|
||
fitness = sum(results[4:]) # total loss
|
||
if fitness < best_fitness:
|
||
best_fitness = fitness
|
||
|
||
# Save training results
|
||
save = (not opt.nosave) or (final_epoch and not opt.evolve) or opt.prebias
|
||
if save:
|
||
with open(results_file, 'r') as f:
|
||
# Create checkpoint
|
||
chkpt = {'epoch': epoch,
|
||
'best_fitness': best_fitness,
|
||
'training_results': f.read(),
|
||
'model': model.module.state_dict() if type(
|
||
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
|
||
'optimizer': None if final_epoch else optimizer.state_dict()}
|
||
|
||
# Save last checkpoint
|
||
torch.save(chkpt, last)
|
||
|
||
# Save best checkpoint
|
||
if best_fitness == fitness:
|
||
torch.save(chkpt, best)
|
||
|
||
# Save backup every 10 epochs (optional)
|
||
if epoch > 0 and epoch % 10 == 0:
|
||
torch.save(chkpt, wdir + 'backup%g.pt' % epoch)
|
||
|
||
# Delete checkpoint
|
||
del chkpt
|
||
|
||
# end epoch ----------------------------------------------------------------------------------------------------
|
||
|
||
# end training
|
||
if len(opt.name) and not opt.prebias:
|
||
fresults, flast, fbest = 'results%s.txt' % opt.name, 'last%s.pt' % opt.name, 'best%s.pt' % opt.name
|
||
os.rename('results.txt', fresults)
|
||
os.rename(wdir + 'last.pt', wdir + flast) if os.path.exists(wdir + 'last.pt') else None
|
||
os.rename(wdir + 'best.pt', wdir + fbest) if os.path.exists(wdir + 'best.pt') else None
|
||
|
||
# save to cloud
|
||
if opt.bucket:
|
||
os.system('gsutil cp %s %s gs://%s' % (fresults, wdir + flast, opt.bucket))
|
||
|
||
plot_results() # save as results.png
|
||
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
|
||
torch.cuda.empty_cache()
|
||
|
||
return results
|
||
|
||
|
||
def prebias():
|
||
# trains output bias layers for 1 epoch and creates new backbone
|
||
if opt.prebias:
|
||
a = opt.img_weights # save settings
|
||
opt.img_weights = False # disable settings
|
||
|
||
train() # transfer-learn yolo biases for 1 epoch
|
||
create_backbone(last) # saved results as backbone.pt
|
||
|
||
opt.weights = wdir + 'backbone.pt' # assign backbone
|
||
opt.prebias = False # disable prebias
|
||
opt.img_weights = a # reset settings
|
||
|
||
|
||
if __name__ == '__main__':
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--epochs', type=int, default=273) # 500200 batches at bs 16, 117263 images = 273 epochs
|
||
parser.add_argument('--batch-size', type=int, default=32) # effective bs = batch_size * accumulate = 16 * 4 = 64
|
||
parser.add_argument('--accumulate', type=int, default=2, help='batches to accumulate before optimizing')
|
||
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
|
||
parser.add_argument('--data', type=str, default='data/coco.data', help='*.data file path')
|
||
parser.add_argument('--multi-scale', action='store_true', help='adjust (67% - 150%) img_size every 10 batches')
|
||
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
|
||
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
|
||
parser.add_argument('--transfer', action='store_true', help='transfer learning')
|
||
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
||
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
||
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||
parser.add_argument('--img-weights', action='store_true', help='select training images by weight')
|
||
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
||
parser.add_argument('--weights', type=str, default='weights/ultralytics49.pt', help='initial weights')
|
||
parser.add_argument('--arc', type=str, default='default', help='yolo architecture') # defaultpw, uCE, uBCE
|
||
parser.add_argument('--prebias', action='store_true', help='transfer-learn yolo biases prior to training')
|
||
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
|
||
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1 or cpu)')
|
||
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
|
||
parser.add_argument('--var', type=float, help='debug variable')
|
||
opt = parser.parse_args()
|
||
opt.weights = last if opt.resume else opt.weights
|
||
print(opt)
|
||
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
|
||
if device.type == 'cpu':
|
||
mixed_precision = False
|
||
|
||
# scale hyp['obj'] by img_size (evolved at 416)
|
||
hyp['obj'] *= opt.img_size / 416.
|
||
|
||
tb_writer = None
|
||
if not opt.evolve: # Train normally
|
||
try:
|
||
# Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/
|
||
from torch.utils.tensorboard import SummaryWriter
|
||
|
||
tb_writer = SummaryWriter()
|
||
except:
|
||
pass
|
||
|
||
prebias() # optional
|
||
train() # train normally
|
||
|
||
else: # Evolve hyperparameters (optional)
|
||
opt.notest = True # only test final epoch
|
||
opt.nosave = True # only save final checkpoint
|
||
if opt.bucket:
|
||
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
|
||
|
||
for _ in range(1): # generations to evolve
|
||
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
|
||
# Select parent(s)
|
||
x = np.loadtxt('evolve.txt', ndmin=2)
|
||
parent = 'weighted' # parent selection method: 'single' or 'weighted'
|
||
if parent == 'single' or len(x) == 1:
|
||
x = x[fitness(x).argmax()]
|
||
elif parent == 'weighted': # weighted combination
|
||
n = min(10, x.shape[0]) # number to merge
|
||
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||
w = fitness(x) - fitness(x).min() # weights
|
||
x = (x[:n] * w.reshape(n, 1)).sum(0) / w.sum() # new parent
|
||
for i, k in enumerate(hyp.keys()):
|
||
hyp[k] = x[i + 7]
|
||
|
||
# Mutate
|
||
np.random.seed(int(time.time()))
|
||
s = [.2, .2, .2, .2, .2, .2, .2, .0, .02, .2, .2, .2, .2, .2, .2, .2, .2, .2] # sigmas
|
||
for i, k in enumerate(hyp.keys()):
|
||
x = (np.random.randn(1) * s[i] + 1) ** 2.0 # plt.hist(x.ravel(), 300)
|
||
hyp[k] *= float(x) # vary by sigmas
|
||
|
||
# Clip to limits
|
||
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
|
||
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
|
||
for k, v in zip(keys, limits):
|
||
hyp[k] = np.clip(hyp[k], v[0], v[1])
|
||
|
||
# Train mutation
|
||
prebias()
|
||
results = train()
|
||
|
||
# Write mutation results
|
||
print_mutation(hyp, results, opt.bucket)
|
||
|
||
# Plot results
|
||
# plot_evolution_results(hyp)
|