import torch def init_seeds(seed=0): torch.cuda.empty_cache() torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Remove randomness (may be slower on Tesla GPUs) # https://pytorch.org/docs/stable/notes/randomness.html if seed == 0: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def select_device(force_cpu=False, apex=False): # apex if mixed precision training https://github.com/NVIDIA/apex cuda = False if force_cpu else torch.cuda.is_available() device = torch.device('cuda:0' if cuda else 'cpu') if not cuda: print('Using CPU') if cuda: c = 1024 ** 2 # bytes to MB ng = torch.cuda.device_count() x = [torch.cuda.get_device_properties(i) for i in range(ng)] cuda_str = 'Using CUDA ' + ('Apex ' if apex else '') for i in range(0, ng): if i == 1: # torch.cuda.set_device(0) # OPTIONAL: Set GPU ID cuda_str = ' ' * len(cuda_str) print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" % (cuda_str, i, x[i].name, x[i].total_memory / c)) print('') # skip a line return device def fuse_conv_and_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = torch.nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, bias=True) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) # prepare spatial bias if conv.bias is not None: b_conv = conv.bias else: b_conv = torch.zeros(conv.weight.size(0)) b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(b_conv + b_bn) return fusedconv