import glob import math import os import random import shutil from pathlib import Path import cv2 import numpy as np import torch from torch.utils.data import Dataset from tqdm import tqdm from PIL import Image, ExifTags from utils.utils import xyxy2xywh, xywh2xyxy img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif'] vid_formats = ['.mov', '.avi', '.mp4'] # Get orientation exif tag for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation] == 'Orientation': break def exif_size(img): # Returns exif-corrected PIL size s = img.size # (width, height) try: rotation = dict(img._getexif().items())[orientation] if rotation == 6: # rotation 270 s = (s[1], s[0]) elif rotation == 8: # rotation 90 s = (s[1], s[0]) except: None return s class LoadImages: # for inference def __init__(self, path, img_size=416): self.height = img_size files = [] if os.path.isdir(path): files = sorted(glob.glob('%s/*.*' % path)) elif os.path.isfile(path): files = [path] images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats] videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats] nI, nV = len(images), len(videos) self.files = images + videos self.nF = nI + nV # number of files self.video_flag = [False] * nI + [True] * nV self.mode = 'images' if any(videos): self.new_video(videos[0]) # new video else: self.cap = None assert self.nF > 0, 'No images or videos found in ' + path def __iter__(self): self.count = 0 return self def __next__(self): if self.count == self.nF: raise StopIteration path = self.files[self.count] if self.video_flag[self.count]: # Read video self.mode = 'video' ret_val, img0 = self.cap.read() if not ret_val: self.count += 1 self.cap.release() if self.count == self.nF: # last video raise StopIteration else: path = self.files[self.count] self.new_video(path) ret_val, img0 = self.cap.read() self.frame += 1 print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nF, self.frame, self.nframes, path), end='') else: # Read image self.count += 1 img0 = cv2.imread(path) # BGR assert img0 is not None, 'File Not Found ' + path print('image %g/%g %s: ' % (self.count, self.nF, path), end='') # Padded resize img, *_ = letterbox(img0, new_shape=self.height) # Normalize RGB img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 # cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image return path, img, img0, self.cap def new_video(self, path): self.frame = 0 self.cap = cv2.VideoCapture(path) self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) def __len__(self): return self.nF # number of files class LoadWebcam: # for inference def __init__(self, img_size=416): self.cam = cv2.VideoCapture(0) self.height = img_size def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 if cv2.waitKey(1) == 27: # esc to quit cv2.destroyAllWindows() raise StopIteration # Read image ret_val, img0 = self.cam.read() assert ret_val, 'Webcam Error' img_path = 'webcam_%g.jpg' % self.count img0 = cv2.flip(img0, 1) # flip left-right print('webcam %g: ' % self.count, end='') # Padded resize img, *_ = letterbox(img0, new_shape=self.height) # Normalize RGB img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 return img_path, img, img0, None def __len__(self): return 0 class LoadImagesAndLabels(Dataset): # for training/testing def __init__(self, path, img_size=416, batch_size=16, augment=False, rect=True, image_weights=False): with open(path, 'r') as f: img_files = f.read().splitlines() self.img_files = [x for x in img_files if os.path.splitext(x)[-1].lower() in img_formats] n = len(self.img_files) bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index nb = bi[-1] + 1 # number of batches assert n > 0, 'No images found in %s' % path self.n = n self.batch = bi # batch index of image self.img_size = img_size self.augment = augment self.image_weights = image_weights self.rect = False if image_weights else rect # Define labels self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in self.img_files] # Rectangular Training https://github.com/ultralytics/yolov3/issues/232 if self.rect: # Read image shapes sp = 'data' + os.sep + path.replace('.txt', '.shapes').split(os.sep)[-1] # shapefile path if not os.path.exists(sp): # read shapes using PIL and write shapefile for next time (faster) s = [exif_size(Image.open(f)) for f in tqdm(self.img_files, desc='Reading image shapes')] np.savetxt(sp, s, fmt='%g') try: with open(sp, 'r') as f: # read existing shapefile s = np.array([x.split() for x in f.read().splitlines()], dtype=np.float64) assert len(s) == n, 'Shapefile out of sync' except: os.remove(sp) print('Shapefile deleted: %s. Please rerun again.' % sp) # Sort by aspect ratio ar = s[:, 1] / s[:, 0] # aspect ratio i = ar.argsort() self.img_files = [self.img_files[i] for i in i] self.label_files = [self.label_files[i] for i in i] ar = ar[i] # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): ari = ar[bi == i] mini, maxi = ari.min(), ari.max() if maxi < 1: shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] self.batch_shapes = np.ceil(np.array(shapes) * img_size / 32.).astype(np.int) * 32 # Preload labels (required for weighted CE training) self.imgs = [None] * n self.labels = [None] * n preload_labels = False if preload_labels: self.labels = [np.zeros((0, 5))] * n iter = tqdm(self.label_files, desc='Reading labels') if n > 10 else self.label_files extract_bounding_boxes = False for i, file in enumerate(iter): try: with open(file, 'r') as f: l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) if l.shape[0]: assert l.shape[1] == 5, '> 5 label columns: %s' % file assert (l >= 0).all(), 'negative labels: %s' % file assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file self.labels[i] = l # Extract object detection boxes for a second stage classifier if extract_bounding_boxes: p = Path(self.img_files[i]) img = cv2.imread(str(p)) h, w, _ = img.shape for j, x in enumerate(l): f = '%s%sclassification%s%g_%g_%s' % ( p.parent.parent, os.sep, os.sep, x[0], j, p.name) if not os.path.exists(Path(f).parent): os.makedirs(Path(f).parent) # make new output folder box = xywh2xyxy(x[1:].reshape(-1, 4)).ravel() box = np.clip(box, 0, 1) # clip boxes outside of image result = cv2.imwrite(f, img[int(box[1] * h):int(box[3] * h), int(box[0] * w):int(box[2] * w)]) if not result: print('stop') except: pass # print('Warning: missing labels for %s' % self.img_files[i]) # missing label file assert len(np.concatenate(self.labels, 0)) > 0, 'No labels found. Incorrect label paths provided.' # Detect corrupted images https://medium.com/joelthchao/programmatically-detect-corrupted-image-8c1b2006c3d3 detect_corrupted_images = False if detect_corrupted_images: from skimage import io # conda install -c conda-forge scikit-image for file in tqdm(self.img_files, desc='Detecting corrupted images'): try: _ = io.imread(file) except: print('Corrupted image detected: %s' % file) def __len__(self): return len(self.img_files) # def __iter__(self): # self.count = -1 # print('ran dataset iter') # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) # return self def __getitem__(self, index): if self.image_weights: index = self.indices[index] img_path = self.img_files[index] label_path = self.label_files[index] # Load image img = self.imgs[index] if img is None: img = cv2.imread(img_path) # BGR assert img is not None, 'File Not Found ' + img_path if self.n < 1001: self.imgs[index] = img # cache image into memory # Augment colorspace augment_hsv = True if self.augment and augment_hsv: # SV augmentation by 50% fraction = 0.50 # must be < 1.0 img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val S = img_hsv[:, :, 1].astype(np.float32) # saturation V = img_hsv[:, :, 2].astype(np.float32) # value a = (random.random() * 2 - 1) * fraction + 1 b = (random.random() * 2 - 1) * fraction + 1 S *= a V *= b img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255) img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # Letterbox h, w, _ = img.shape if self.rect: shape = self.batch_shapes[self.batch[index]] img, ratiow, ratioh, padw, padh = letterbox(img, new_shape=shape, mode='rect') else: shape = self.img_size img, ratiow, ratioh, padw, padh = letterbox(img, new_shape=shape, mode='square') # Load labels labels = [] if os.path.isfile(label_path): x = self.labels[index] if x is None: # labels not preloaded with open(label_path, 'r') as f: x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) self.labels[index] = x # save for next time if x.size > 0: # Normalized xywh to pixel xyxy format labels = x.copy() labels[:, 1] = ratiow * w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = ratioh * h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = ratiow * w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = ratioh * h * (x[:, 2] + x[:, 4] / 2) + padh # Augment image and labels if self.augment: img, labels = random_affine(img, labels, degrees=(-5, 5), translate=(0.10, 0.10), scale=(0.90, 1.10)) nL = len(labels) # number of labels if nL: # convert xyxy to xywh labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # Normalize coordinates 0 - 1 labels[:, [2, 4]] /= img.shape[0] # height labels[:, [1, 3]] /= img.shape[1] # width if self.augment: # random left-right flip lr_flip = True if lr_flip and random.random() > 0.5: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] # random up-down flip ud_flip = False if ud_flip and random.random() > 0.5: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] labels_out = torch.zeros((nL, 6)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) # Normalize img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 return torch.from_numpy(img), labels_out, img_path, (h, w) @staticmethod def collate_fn(batch): img, label, path, hw = list(zip(*batch)) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, hw def letterbox(img, new_shape=416, color=(127.5, 127.5, 127.5), mode='auto'): # Resize a rectangular image to a 32 pixel multiple rectangle # https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): ratio = float(new_shape) / max(shape) else: ratio = max(new_shape) / max(shape) # ratio = new / old ratiow, ratioh = ratio, ratio new_unpad = (int(round(shape[1] * ratio)), int(round(shape[0] * ratio))) # Compute padding https://github.com/ultralytics/yolov3/issues/232 if mode is 'auto': # minimum rectangle dw = np.mod(new_shape - new_unpad[0], 32) / 2 # width padding dh = np.mod(new_shape - new_unpad[1], 32) / 2 # height padding elif mode is 'square': # square dw = (new_shape - new_unpad[0]) / 2 # width padding dh = (new_shape - new_unpad[1]) / 2 # height padding elif mode is 'rect': # square dw = (new_shape[1] - new_unpad[0]) / 2 # width padding dh = (new_shape[0] - new_unpad[1]) / 2 # height padding elif mode is 'scaleFill': dw, dh = 0.0, 0.0 new_unpad = (new_shape, new_shape) ratiow, ratioh = new_shape / shape[1], new_shape / shape[0] top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_AREA) # resized, no border img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded square return img, ratiow, ratioh, dw, dh def random_affine(img, targets=(), degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2), borderValue=(127.5, 127.5, 127.5)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 if targets is None: targets = [] border = 0 # width of added border (optional) height = img.shape[0] + border * 2 width = img.shape[1] + border * 2 # Rotation and Scale R = np.eye(3) a = random.random() * (degrees[1] - degrees[0]) + degrees[0] # a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations s = random.random() * (scale[1] - scale[0]) + scale[0] R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s) # Translation T = np.eye(3) T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[0] + border # x translation (pixels) T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[1] + border # y translation (pixels) # Shear S = np.eye(3) S[0, 1] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # y shear (deg) M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!! imw = cv2.warpAffine(img, M[:2], dsize=(width, height), flags=cv2.INTER_AREA, borderValue=borderValue) # BGR order borderValue # Return warped points also if len(targets) > 0: n = targets.shape[0] points = targets[:, 1:5].copy() area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1]) # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = (xy @ M.T)[:, :2].reshape(n, 8) # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # # apply angle-based reduction of bounding boxes # radians = a * math.pi / 180 # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 # x = (xy[:, 2] + xy[:, 0]) / 2 # y = (xy[:, 3] + xy[:, 1]) / 2 # w = (xy[:, 2] - xy[:, 0]) * reduction # h = (xy[:, 3] - xy[:, 1]) * reduction # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T # reject warped points outside of image xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) w = xy[:, 2] - xy[:, 0] h = xy[:, 3] - xy[:, 1] area = w * h ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10) targets = targets[i] targets[:, 1:5] = xy[i] return imw, targets def convert_images2bmp(): # cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s for path in ['../coco/images/val2014/', '../coco/images/train2014/']: folder = os.sep + Path(path).name output = path.replace(folder, folder + 'bmp') if os.path.exists(output): shutil.rmtree(output) # delete output folder os.makedirs(output) # make new output folder for f in tqdm(glob.glob('%s*.jpg' % path)): save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp') cv2.imwrite(save_name, cv2.imread(f)) for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']: with open(label_path, 'r') as file: lines = file.read() lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace( '/Users/glennjocher/PycharmProjects/', '../') with open(label_path.replace('5k', '5k_bmp'), 'w') as file: file.write(lines)