import glob import math import os import random import shutil from pathlib import Path import cv2 import numpy as np import torch from torch.utils.data import Dataset from tqdm import tqdm from utils.utils import xyxy2xywh class LoadImages: # for inference def __init__(self, path, img_size=416): if os.path.isdir(path): image_format = ['.jpg', '.jpeg', '.png', '.tif'] self.files = sorted(glob.glob('%s/*.*' % path)) self.files = list(filter(lambda x: os.path.splitext(x)[1].lower() in image_format, self.files)) elif os.path.isfile(path): self.files = [path] self.nF = len(self.files) # number of image files self.height = img_size assert self.nF > 0, 'No images found in ' + path def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 if self.count == self.nF: raise StopIteration img_path = self.files[self.count] # Read image img0 = cv2.imread(img_path) # BGR assert img0 is not None, 'File Not Found ' + img_path # Padded resize img, _, _, _ = letterbox(img0, height=self.height) # Normalize RGB img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 # cv2.imwrite(img_path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image return img_path, img, img0 def __len__(self): return self.nF # number of files class LoadWebcam: # for inference def __init__(self, img_size=416): self.cam = cv2.VideoCapture(0) self.height = img_size def __iter__(self): self.count = -1 return self def __next__(self): self.count += 1 if cv2.waitKey(1) == 27: # esc to quit cv2.destroyAllWindows() raise StopIteration # Read image ret_val, img0 = self.cam.read() assert ret_val, 'Webcam Error' img_path = 'webcam_%g.jpg' % self.count img0 = cv2.flip(img0, 1) # flip left-right # Padded resize img, _, _, _ = letterbox(img0, height=self.height) # Normalize RGB img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 return img_path, img, img0 def __len__(self): return 0 class LoadImagesAndLabels(Dataset): # for training/testing def __init__(self, path, img_size=416, augment=False): with open(path, 'r') as file: self.img_files = file.read().splitlines() self.img_files = list(filter(lambda x: len(x) > 0, self.img_files)) assert len(self.img_files) > 0, 'No images found in %s' % path self.img_size = img_size self.augment = augment self.label_files = [x.replace('images', 'labels').replace('.bmp', '.txt').replace('.jpg', '.txt') for x in self.img_files] def __len__(self): return len(self.img_files) def __getitem__(self, index): img_path = self.img_files[index] label_path = self.label_files[index] img = cv2.imread(img_path) # BGR assert img is not None, 'File Not Found ' + img_path augment_hsv = True if self.augment and augment_hsv: # SV augmentation by 50% fraction = 0.50 img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) S = img_hsv[:, :, 1].astype(np.float32) V = img_hsv[:, :, 2].astype(np.float32) a = (random.random() * 2 - 1) * fraction + 1 S *= a if a > 1: np.clip(S, a_min=0, a_max=255, out=S) a = (random.random() * 2 - 1) * fraction + 1 V *= a if a > 1: np.clip(V, a_min=0, a_max=255, out=V) img_hsv[:, :, 1] = S.astype(np.uint8) img_hsv[:, :, 2] = V.astype(np.uint8) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) h, w, _ = img.shape img, ratio, padw, padh = letterbox(img, height=self.img_size) # Load labels labels = [] if os.path.isfile(label_path): with open(label_path, 'r') as file: lines = file.read().splitlines() x = np.array([x.split() for x in lines], dtype=np.float32) if x.size > 0: # Normalized xywh to pixel xyxy format labels = x.copy() labels[:, 1] = ratio * w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = ratio * h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = ratio * w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = ratio * h * (x[:, 2] + x[:, 4] / 2) + padh # Augment image and labels if self.augment: img, labels = random_affine(img, labels, degrees=(-5, 5), translate=(0.10, 0.10), scale=(0.90, 1.10)) nL = len(labels) # number of labels if nL: # convert xyxy to xywh labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) / self.img_size if self.augment: # random left-right flip lr_flip = True if lr_flip and random.random() > 0.5: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] # random up-down flip ud_flip = False if ud_flip and random.random() > 0.5: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] labels_out = torch.zeros((nL, 6)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) # Normalize img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 return torch.from_numpy(img), labels_out, img_path, (h, w) @staticmethod def collate_fn(batch): img, label, path, hw = list(zip(*batch)) # transposed for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, hw def letterbox(img, height=416, color=(127.5, 127.5, 127.5)): # resize a rectangular image to a padded square shape = img.shape[:2] # shape = [height, width] ratio = float(height) / max(shape) # ratio = old / new new_shape = (round(shape[1] * ratio), round(shape[0] * ratio)) dw = (height - new_shape[0]) / 2 # width padding dh = (height - new_shape[1]) / 2 # height padding top, bottom = round(dh - 0.1), round(dh + 0.1) left, right = round(dw - 0.1), round(dw + 0.1) img = cv2.resize(img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded square return img, ratio, dw, dh def random_affine(img, targets=(), degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2), borderValue=(127.5, 127.5, 127.5)): # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4 if targets is None: targets = [] border = 0 # width of added border (optional) height = max(img.shape[0], img.shape[1]) + border * 2 # Rotation and Scale R = np.eye(3) a = random.random() * (degrees[1] - degrees[0]) + degrees[0] # a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations s = random.random() * (scale[1] - scale[0]) + scale[0] R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s) # Translation T = np.eye(3) T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[0] + border # x translation (pixels) T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[1] + border # y translation (pixels) # Shear S = np.eye(3) S[0, 1] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # y shear (deg) M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!! imw = cv2.warpPerspective(img, M, dsize=(height, height), flags=cv2.INTER_LINEAR, borderValue=borderValue) # BGR order borderValue # Return warped points also if len(targets) > 0: n = targets.shape[0] points = targets[:, 1:5].copy() area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1]) # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = (xy @ M.T)[:, :2].reshape(n, 8) # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # apply angle-based reduction radians = a * math.pi / 180 reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5 x = (xy[:, 2] + xy[:, 0]) / 2 y = (xy[:, 3] + xy[:, 1]) / 2 w = (xy[:, 2] - xy[:, 0]) * reduction h = (xy[:, 3] - xy[:, 1]) * reduction xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T # reject warped points outside of image np.clip(xy, 0, height, out=xy) w = xy[:, 2] - xy[:, 0] h = xy[:, 3] - xy[:, 1] area = w * h ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10) targets = targets[i] targets[:, 1:5] = xy[i] return imw, targets def convert_images2bmp(): # cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s for path in ['../coco/images/val2014/', '../coco/images/train2014/']: folder = os.sep + Path(path).name output = path.replace(folder, folder + 'bmp') if os.path.exists(output): shutil.rmtree(output) # delete output folder os.makedirs(output) # make new output folder for f in tqdm(glob.glob('%s*.jpg' % path)): save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp') cv2.imwrite(save_name, cv2.imread(f)) for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']: with open(label_path, 'r') as file: lines = file.read() lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace( '/Users/glennjocher/PycharmProjects/', '../') with open(label_path.replace('5k', '5k_bmp'), 'w') as file: file.write(lines)