# Introduction This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license**. For more information please visit https://www.ultralytics.com. # Description The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. **Credit to Joseph Redmon for YOLO:** https://pjreddie.com/darknet/yolo/. # Requirements Python 3.7 or later with the following `pip3 install -U -r requirements.txt` packages: - `numpy` - `torch >= 1.1.0` - `opencv-python` - `tqdm` # Tutorials * [GCP Quickstart](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart) * [Transfer Learning](https://github.com/ultralytics/yolov3/wiki/Example:-Transfer-Learning) * [Train Single Image](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Image) * [Train Single Class](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Class) * [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) # Jupyter Notebook Our Jupyter [notebook](https://colab.research.google.com/github/ultralytics/yolov3/blob/master/examples.ipynb) provides quick training, inference and testing examples. # Training **Start Training:** `python3 train.py` to begin training after downloading COCO data with `data/get_coco_dataset.sh`. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set. **Resume Training:** `python3 train.py --resume` to resume training from `weights/last.pt`. **Plot Training:** `from utils import utils; utils.plot_results()` plots training results from `coco_16img.data`, `coco_64img.data`, 2 example datasets available in the `data/` folder, which train and test on the first 16 and 64 images of the COCO2014-trainval dataset. ## Image Augmentation `datasets.py` applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied **only** during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below. Augmentation | Description --- | --- Translation | +/- 10% (vertical and horizontal) Rotation | +/- 5 degrees Shear | +/- 2 degrees (vertical and horizontal) Scale | +/- 10% Reflection | 50% probability (horizontal-only) H**S**V Saturation | +/- 50% HS**V** Intensity | +/- 50% ## Speed https://cloud.google.com/deep-learning-vm/ **Machine type:** n1-standard-8 (8 vCPUs, 30 GB memory) **CPU platform:** Intel Skylake **GPUs:** K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.83/hr) CUDA with [Nvidia Apex](https://github.com/NVIDIA/apex) FP16/32 **HDD:** 100 GB SSD **Dataset:** COCO train 2014 (117,263 images) **Model:** `yolov3-spp.cfg` GPUs | `batch_size` | images/sec | epoch time | epoch cost --- |---| --- | --- | --- K80 | 64 (32x2) | 11 | 175 min | $0.58 T4 | 64 (32x2) | 40 | 49 min | $0.29 T4 x2 | 64 (64x1) | 61 | 32 min | $0.36 V100 | 64 (32x2) | 115 | 17 min | $0.24 V100 x2 | 64 (64x1) | 150 | 13 min | $0.36 2080Ti | 64 (32x2) | 81 | 24 min | - 2080Ti x2 | 64 (64x1) | 140 | 14 min | - # Inference `detect.py` runs inference on any sources: ```bash python3 detect.py --source ... ``` - Image: `--source file.jpg` - Video: `--source file.mp4` - Directory: `--source dir/` - Webcam: `--source 0` - RTSP stream: `--source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa` - HTTP stream: `--source http://wmccpinetop.axiscam.net/mjpg/video.mjpg` To run a specific models: **YOLOv3:** `python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.weights` **YOLOv3-tiny:** `python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.weights` **YOLOv3-SPP:** `python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.weights` # Pretrained Weights Download from: [https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0](https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0) ## Darknet Conversion ```bash $ git clone https://github.com/ultralytics/yolov3 && cd yolov3 # convert darknet cfg/weights to pytorch model $ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')" Success: converted 'weights/yolov3-spp.weights' to 'converted.pt' # convert cfg/pytorch model to darknet weights $ python3 -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')" Success: converted 'weights/yolov3-spp.pt' to 'converted.weights' ``` # mAP - `test.py --weights weights/yolov3.weights` tests official YOLOv3 weights. - `test.py --weights weights/last.pt` tests latest checkpoint. - mAPs on COCO2014 using pycocotools. - mAP@0.5 run at `--nms-thres 0.5`, mAP@0.5...0.95 run at `--nms-thres 0.7`. - YOLOv3-SPP ultralytics is `ultralytics68.pt` with `yolov3-spp.cfg`. - Darknet results published in https://arxiv.org/abs/1804.02767. |Size |COCO mAP
@0.5...0.95 |COCO mAP
@0.5 --- | --- | --- | --- YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**YOLOv3-SPP ultralytics** |320 |14.0
28.7
30.5
**35.4** |29.1
51.8
52.3
**54.3** YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**YOLOv3-SPP ultralytics** |416 |16.0
31.2
33.9
**39.0** |33.0
55.4
56.9
**59.2** YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**YOLOv3-SPP ultralytics** |512 |16.6
32.7
35.6
**40.3** |34.9
57.7
59.5
**60.6** YOLOv3-tiny
YOLOv3
YOLOv3-SPP
**YOLOv3-SPP ultralytics** |608 |16.6
33.1
37.0
**40.9** |35.4
58.2
60.7
**60.9** ```bash $ python3 test.py --save-json --img-size 608 --nms-thres 0.5 --weights ultralytics68.pt Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco.data', device='1', img_size=608, iou_thres=0.5, nms_thres=0.7, save_json=True, weights='ultralytics68.pt') Using CUDA device0 _CudaDeviceProperties(name='GeForce RTX 2080 Ti', total_memory=11019MB) Class Images Targets P R mAP@0.5 F1: 100%|███████████████████████████████████████████████████████████████████████████████████| 313/313 [09:46<00:00, 1.09it/s] all 5e+03 3.58e+04 0.0823 0.798 0.595 0.145 person 5e+03 1.09e+04 0.0999 0.903 0.771 0.18 bicycle 5e+03 316 0.0491 0.782 0.56 0.0925 car 5e+03 1.67e+03 0.0552 0.845 0.646 0.104 motorcycle 5e+03 391 0.11 0.847 0.704 0.194 airplane 5e+03 131 0.099 0.947 0.878 0.179 bus 5e+03 261 0.142 0.874 0.825 0.244 train 5e+03 212 0.152 0.863 0.806 0.258 truck 5e+03 352 0.0849 0.682 0.514 0.151 boat 5e+03 475 0.0498 0.787 0.504 0.0937 traffic light 5e+03 516 0.0304 0.752 0.516 0.0584 fire hydrant 5e+03 83 0.144 0.916 0.882 0.248 stop sign 5e+03 84 0.0833 0.917 0.809 0.153 parking meter 5e+03 59 0.0607 0.695 0.611 0.112 bench 5e+03 473 0.0294 0.685 0.363 0.0564 bird 5e+03 469 0.0521 0.716 0.524 0.0972 cat 5e+03 195 0.252 0.908 0.78 0.395 dog 5e+03 223 0.192 0.883 0.829 0.315 horse 5e+03 305 0.121 0.911 0.843 0.214 sheep 5e+03 321 0.114 0.854 0.724 0.201 cow 5e+03 384 0.105 0.849 0.695 0.187 elephant 5e+03 284 0.184 0.944 0.912 0.308 bear 5e+03 53 0.358 0.925 0.875 0.516 zebra 5e+03 277 0.176 0.935 0.858 0.297 giraffe 5e+03 170 0.171 0.959 0.892 0.29 backpack 5e+03 384 0.0426 0.708 0.392 0.0803 umbrella 5e+03 392 0.0672 0.878 0.65 0.125 handbag 5e+03 483 0.0238 0.629 0.242 0.0458 tie 5e+03 297 0.0419 0.805 0.599 0.0797 suitcase 5e+03 310 0.0823 0.855 0.628 0.15 frisbee 5e+03 109 0.126 0.872 0.796 0.221 skis 5e+03 282 0.0473 0.748 0.454 0.089 snowboard 5e+03 92 0.0579 0.804 0.559 0.108 sports ball 5e+03 236 0.057 0.733 0.622 0.106 kite 5e+03 399 0.087 0.852 0.645 0.158 baseball bat 5e+03 125 0.0496 0.776 0.603 0.0932 baseball glove 5e+03 139 0.0511 0.734 0.563 0.0956 skateboard 5e+03 218 0.0655 0.844 0.73 0.122 surfboard 5e+03 266 0.0709 0.827 0.651 0.131 tennis racket 5e+03 183 0.0694 0.858 0.759 0.128 bottle 5e+03 966 0.0484 0.812 0.513 0.0914 wine glass 5e+03 366 0.0735 0.738 0.543 0.134 cup 5e+03 897 0.0637 0.788 0.538 0.118 fork 5e+03 234 0.0411 0.662 0.487 0.0774 knife 5e+03 291 0.0334 0.557 0.292 0.0631 spoon 5e+03 253 0.0281 0.621 0.307 0.0537 bowl 5e+03 620 0.0624 0.795 0.514 0.116 banana 5e+03 371 0.052 0.83 0.41 0.0979 apple 5e+03 158 0.0293 0.741 0.262 0.0564 sandwich 5e+03 160 0.0913 0.725 0.522 0.162 orange 5e+03 189 0.0382 0.688 0.32 0.0723 broccoli 5e+03 332 0.0513 0.88 0.445 0.097 carrot 5e+03 346 0.0398 0.766 0.362 0.0757 hot dog 5e+03 164 0.0958 0.646 0.494 0.167 pizza 5e+03 224 0.0886 0.875 0.699 0.161 donut 5e+03 237 0.0925 0.827 0.64 0.166 cake 5e+03 241 0.0658 0.71 0.539 0.12 chair 5e+03 1.62e+03 0.0432 0.793 0.489 0.0819 couch 5e+03 236 0.118 0.801 0.584 0.205 potted plant 5e+03 431 0.0373 0.852 0.505 0.0714 bed 5e+03 195 0.149 0.846 0.693 0.253 dining table 5e+03 634 0.0546 0.82 0.49 0.102 toilet 5e+03 179 0.161 0.95 0.81 0.275 tv 5e+03 257 0.0922 0.903 0.79 0.167 laptop 5e+03 237 0.127 0.869 0.744 0.222 mouse 5e+03 95 0.0648 0.863 0.732 0.12 remote 5e+03 241 0.0436 0.788 0.535 0.0827 keyboard 5e+03 117 0.0668 0.923 0.755 0.125 cell phone 5e+03 291 0.0364 0.704 0.436 0.0692 microwave 5e+03 88 0.154 0.841 0.743 0.261 oven 5e+03 142 0.0618 0.803 0.576 0.115 toaster 5e+03 11 0.0565 0.636 0.191 0.104 sink 5e+03 211 0.0439 0.853 0.544 0.0835 refrigerator 5e+03 107 0.0791 0.907 0.742 0.145 book 5e+03 1.08e+03 0.0399 0.667 0.233 0.0753 clock 5e+03 292 0.0542 0.836 0.733 0.102 vase 5e+03 353 0.0675 0.799 0.591 0.125 scissors 5e+03 56 0.0397 0.75 0.461 0.0755 teddy bear 5e+03 245 0.0995 0.882 0.669 0.179 hair drier 5e+03 11 0.00508 0.0909 0.0475 0.00962 toothbrush 5e+03 77 0.0371 0.74 0.418 0.0706 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.409 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.600 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.446 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.243 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.450 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.514 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.326 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.536 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.593 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.422 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.640 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.707 ``` # Citation [![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888) # Contact **Issues should be raised directly in the repository.** For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.