import argparse import time from models import * from utils.datasets import * from utils.utils import * from utils import torch_utils def detect( cfg, weights, images_path, output='output', img_size=416, conf_thres=0.3, nms_thres=0.45, save_txt=False, save_images=True, ): device = torch_utils.select_device() os.system('rm -rf ' + output) os.makedirs(output, exist_ok=True) # Load model model = Darknet(cfg, img_size) if weights.endswith('.pt'): # pytorch format if weights.endswith('weights/yolov3.pt') and not os.path.isfile(weights): os.system('wget https://storage.googleapis.com/ultralytics/yolov3.pt -O ' + weights) checkpoint = torch.load(weights, map_location='cpu') model.load_state_dict(checkpoint['model']) del checkpoint else: # darknet format load_darknet_weights(model, weights) model.to(device).eval() # Set Dataloader dataloader = load_images(images_path, img_size=img_size) # Classes and colors classes = load_classes(parse_data_cfg('cfg/coco.data')['names']) # Extracts class labels from file color_list = [[random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)] for _ in range(len(classes))] for i, (path, img, img0) in enumerate(dataloader): print('image %g/%g: %s' % (i + 1, len(dataloader), path)) t = time.time() # Get detections with torch.no_grad(): img = torch.from_numpy(img).unsqueeze(0).to(device) if ONNX_EXPORT: pred = torch.onnx._export(model, img, 'weights/model.onnx', verbose=True) return # ONNX export pred = model(img) pred = pred[pred[:, :, 4] > conf_thres] if len(pred) > 0: detections = non_max_suppression(pred.unsqueeze(0), conf_thres, nms_thres)[0] # Draw bounding boxes and labels of detections if detections is not None: img = img0 # The amount of padding that was added pad_x = max(img.shape[0] - img.shape[1], 0) * (img_size / max(img.shape)) pad_y = max(img.shape[1] - img.shape[0], 0) * (img_size / max(img.shape)) # Image height and width after padding is removed unpad_h = img_size - pad_y unpad_w = img_size - pad_x unique_classes = detections[:, -1].cpu().unique() bbox_colors = random.sample(color_list, len(unique_classes)) # write results to .txt file results_img_path = os.path.join(output, path.split('/')[-1]) results_txt_path = results_img_path + '.txt' if os.path.isfile(results_txt_path): os.remove(results_txt_path) for i in unique_classes: n = (detections[:, -1].cpu() == i).sum() print('%g %ss' % (n, classes[int(i)])) for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: # Rescale coordinates to original dimensions box_h = ((y2 - y1) / unpad_h) * img.shape[0] box_w = ((x2 - x1) / unpad_w) * img.shape[1] y1 = (((y1 - pad_y // 2) / unpad_h) * img.shape[0]).round().item() x1 = (((x1 - pad_x // 2) / unpad_w) * img.shape[1]).round().item() x2 = (x1 + box_w).round().item() y2 = (y1 + box_h).round().item() x1, y1, x2, y2 = max(x1, 0), max(y1, 0), max(x2, 0), max(y2, 0) # write to file if save_txt: with open(results_txt_path, 'a') as file: file.write(('%g %g %g %g %g %g \n') % (x1, y1, x2, y2, cls_pred, cls_conf * conf)) if save_images: # Add the bbox to the plot label = '%s %.2f' % (classes[int(cls_pred)], conf) color = bbox_colors[int(np.where(unique_classes == int(cls_pred))[0])] plot_one_box([x1, y1, x2, y2], img, label=label, color=color) if save_images: # Save generated image with detections cv2.imwrite(results_img_path.replace('.bmp', '.jpg').replace('.tif', '.jpg'), img) print('Done. (%.3fs)\n' % (time.time() - t)) if platform == 'darwin': # MacOS (local) os.system('open ' + output) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--image-folder', type=str, default='data/samples', help='path to images') parser.add_argument('--output-folder', type=str, default='output', help='path to outputs') parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path') parser.add_argument('--weights', type=str, default='weights/yolov3.pt', help='path to weights file') parser.add_argument('--conf-thres', type=float, default=0.50, help='object confidence threshold') parser.add_argument('--nms-thres', type=float, default=0.45, help='iou threshold for non-maximum suppression') parser.add_argument('--img-size', type=int, default=32 * 13, help='size of each image dimension') opt = parser.parse_args() print(opt) detect( opt.cfg, opt.weights, opt.image_folder, output=opt.output_folder, img_size=opt.img_size, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres, )